A024787 Number of 3's in all partitions of n.
0, 0, 1, 1, 2, 4, 6, 9, 15, 21, 31, 45, 63, 87, 122, 164, 222, 298, 395, 519, 683, 885, 1146, 1475, 1887, 2401, 3050, 3845, 4837, 6060, 7563, 9402, 11664, 14405, 17751, 21807, 26715, 32634, 39784, 48352, 58649, 70969, 85690, 103232, 124143, 148951, 178407, 213277, 254509
Offset: 1
Examples
From _Omar E. Pol_, Oct 25 2012: (Start) For n = 7 we have: -------------------------------------- . Number Partitions of 7 of 3's -------------------------------------- 7 .............................. 0 4 + 3 .......................... 1 5 + 2 .......................... 0 3 + 2 + 2 ...................... 1 6 + 1 .......................... 0 3 + 3 + 1 ...................... 2 4 + 2 + 1 ...................... 0 2 + 2 + 2 + 1 .................. 0 5 + 1 + 1 ...................... 0 3 + 2 + 1 + 1 .................. 1 4 + 1 + 1 + 1 .................. 0 2 + 2 + 1 + 1 + 1 .............. 0 3 + 1 + 1 + 1 + 1 .............. 1 2 + 1 + 1 + 1 + 1 + 1 .......... 0 1 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0 ------------------------------------ . 13 - 7 = 6 The difference between the sum of the third column and the sum of the fourth column of the set of partitions of 7 is 13 - 7 = 6 and equals the number of 3's in all partitions of 7, so a(7) = 6. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g; if n=0 or i=1 then [1, 0] else g:= `if`(i>n, [0$2], b(n-i, i)); b(n, i-1) +g +[0, `if`(i=3, g[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
Mathematica
Table[ Count[ Flatten[ IntegerPartitions[n]], 3], {n, 1, 50} ] b[n_, i_] := b[n, i] = Module[{g}, If[n==0 || i==1, {1, 0}, g = If[i>n, {0, 0}, b[n-i, i]]; b[n, i-1] + g + {0, If[i==3, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *) Join[{0, 0}, (1/((1 - x^3) QPochhammer[x]) + O[x]^50)[[3]]] (* Vladimir Reshetnikov, Nov 22 2016 *)
Formula
a(n) = Sum_{k=1..floor(n/3)} A263232(n,k). - Alois P. Heinz, Nov 01 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (6*Pi*sqrt(2*n)) * (1 - 37*Pi/(24*sqrt(6*n)) + (37/48 + 937*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^2/((1 - x^3)*(x)inf), where (q)_inf is the q-Pochhammer symbol (the Euler function). - _Vladimir Reshetnikov, Nov 22 2016
G.f.: x^3/((1 - x)*(1 - x^2)*(1 - x^3)) * Sum_{n >= 0} x^(3*n)/( Product_{k = 1..n} 1 - x^k ); that is, convolution of A069905 (partitions into 3 parts, or, modulo offset differences, partitions into parts <= 3) and A008483 (partitions into parts >= 3). - Peter Bala, Jan 17 2021
Comments