A024789 Number of 5's in all partitions of n.
0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 50, 68, 94, 126, 170, 226, 299, 391, 511, 660, 853, 1091, 1393, 1766, 2235, 2811, 3527, 4403, 5484, 6800, 8415, 10369, 12752, 15627, 19110, 23298, 28346, 34389, 41642, 50295, 60636, 72929, 87563, 104903, 125470
Offset: 1
Keywords
Examples
From _Omar E. Pol_, Oct 25 2012: (Start) For n = 8 we have: -------------------------------------- . Number Partitions of 8 of 5's -------------------------------------- 8 .............................. 0 4 + 4 .......................... 0 5 + 3 .......................... 1 6 + 2 .......................... 0 3 + 3 + 2 ...................... 0 4 + 2 + 2 ...................... 0 2 + 2 + 2 + 2 .................. 0 7 + 1 .......................... 0 4 + 3 + 1 ...................... 0 5 + 2 + 1 ...................... 1 3 + 2 + 2 + 1 .................. 0 6 + 1 + 1 ...................... 0 3 + 3 + 1 + 1 .................. 0 4 + 2 + 1 + 1 .................. 0 2 + 2 + 2 + 1 + 1 .............. 0 5 + 1 + 1 + 1 .................. 1 3 + 2 + 1 + 1 + 1 .............. 0 4 + 1 + 1 + 1 + 1 .............. 0 2 + 2 + 1 + 1 + 1 + 1 .......... 0 3 + 1 + 1 + 1 + 1 + 1 .......... 0 2 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 .. 0 ------------------------------------ . 7 - 4 = 3 The difference between the sum of the fifth column and the sum of the sixth column of the set of partitions of 8 is 7 - 4 = 3 and equals the number of 5's in all partitions of 8, so a(8) = 3. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
Programs
-
Maple
b:= proc(n, i) option remember; local g; if n=0 or i=1 then [1, 0] else g:= `if`(i>n, [0$2], b(n-i, i)); b(n, i-1) +g +[0, `if`(i=5, g[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
Mathematica
Table[ Count[ Flatten[ IntegerPartitions[n]], 5], {n, 1, 50} ] (* second program: *) b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 5, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
-
PARI
x='x+O('x^50); concat([0, 0, 0, 0], Vec(x^5/(1 - x^5) * prod(k=1, 50, 1/(1 - x^k)))) \\ Indranil Ghosh, Apr 06 2017
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (10*Pi*sqrt(2*n)) * (1 - 61*Pi/(24*sqrt(6*n)) + (61/48 + 2521*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^5/(1 - x^5) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 06 2017
Comments