A024792 Number of 8's in all partitions of n.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 31, 44, 59, 82, 108, 146, 191, 254, 328, 429, 549, 709, 900, 1148, 1446, 1829, 2286, 2865, 3559, 4427, 5465, 6752, 8288, 10178, 12429, 15175, 18442, 22404, 27102, 32767, 39473, 47516, 57012, 68349, 81703, 97579, 116236
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g; if n=0 or i=1 then [1, 0] else g:= `if`(i>n, [0$2], b(n-i, i)); b(n, i-1) +g +[0, `if`(i=8, g[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
Mathematica
Table[ Count[ Flatten[ IntegerPartitions[n]], 8], {n, 1, 53} ] (* second program: *) b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 8, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
Formula
From Peter Bala, Dec 26 2013: (Start)
a(n) + a(n+2) + a(n+4) + a(n+6) = A024786(n).
O.g.f.: x^8/(1 - x^8) * product {k >= 1} 1/(1 - x^k) = x^8 + x^9 + 2*x^10 + 3*x^11 + ....
Asymptotic result: log(a(n)) ~ 2*sqrt(Pi^2/6)*sqrt(n) as n -> inf. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*Pi*sqrt(2*n)) * (1 - 97*Pi/(24*sqrt(6*n)) + (97/48 + 6337*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
Comments