A024830 a(n) = least m such that if r and s in {F(2*h)/F(2*h+1): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).
7, 18, 73, 424, 2741, 18389, 124799, 851937, 5831634, 39952039, 273777171, 1876334786, 12860231668
Offset: 2
Programs
-
Mathematica
(* For a guide to related sequences, see A001000. *) leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Table[N[Fibonacci[2 h]/Fibonacci[2 h + 1]], {h, 1, 10}]; t1 = leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Extensions
Extended by Clark Kimberling, Aug 07 2012
a(11)-a(14) from Sean A. Irvine, Jul 25 2019
Comments