A001000
a(n) = least m such that if a/b < c/d where a,b,c,d are integers in [0,n], then a/b < k/m < c/d for some integer k.
Original entry on oeis.org
2, 3, 5, 7, 13, 17, 26, 31, 43, 57, 65, 82, 101, 111, 133, 157, 183, 197, 226, 257, 290, 307, 343, 381, 421, 463, 485, 530, 577, 626, 677, 703, 757, 813, 871, 931, 993, 1025, 1090, 1157, 1226, 1297, 1370, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1937, 2026, 2117
Offset: 1
The Farey fractions of order 4, 0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1, are separated by the fractions k/7: 0/1 < 1/7 <1/4 < 2/7 < 1/3 < 3/7 < 1/2 < 4/7 < 2/3 <5/7 < 3/4 <6/7 < 1 and 7 is the least m for which at least one k/m lies strictly between each pair of Farey fractions.
-
(* The following program generates a northwest corner of an array in which row k shows the least k-th separator of the set {1/h : h = 1,2,...,n}. *)
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (n #[[1]] <=
s + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
TableForm[Map[leastSeparatorS[1/Range[15], #] &, Range[10]]]
(* Peter J. C. Moses, Aug 07 2012 *)
Incompleteness of old definition pointed out by Christopher Carl Heckman, and revised definition supplied by
Clark Kimberling, Feb 18 2004
Definition of separator, guide to related sequences, and Mathematica program added by
Clark Kimberling, Aug 07 2012
A213205
T(n,k) = ((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2; n , k > 0, read by antidiagonals.
Original entry on oeis.org
1, 5, 4, 2, 3, 6, 10, 9, 14, 13, 7, 8, 11, 12, 15, 19, 18, 23, 22, 27, 26, 16, 17, 20, 21, 24, 25, 28, 32, 31, 36, 35, 40, 39, 44, 43, 29, 30, 33, 34, 37, 38, 41, 42, 45, 49, 48, 53, 52, 57, 56, 61, 60, 65, 64, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 70
Offset: 1
The start of the sequence as table:
1....5...2..10...7..19..16...
4....3...9...8..18..17..31...
6...14..11..23..20..36..33...
13..12..22..21..35..34..52...
15..27..24..40..37..57..54...
26..25..39..38..56..55..77...
28..44..41..61..58..82..79...
. . .
The start of the sequence as triangle array read by rows:
1;
5,4;
2,3,6;
10,9,14,13;
7,8,11,12,15;
19,18,23,22,27,26;
16,17,20,21,24,25,28;
. . .
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
5,4,2,3,6;
10,9,14,13,7,8,11,12,15;
19,18,23,22,27,26,16,17,20,21,24,25,28;
. . .
Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+7, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-3, 2*r*r-r.
Cf.
A211377,
A130883,
A100037,
A033816,
A000384,
A091823,
A014106,
A071355,
A130861,
A188135,
A033567,
A033566,
A139271,
A024847,
A033585,
A002260,
A004736,
A003056,
A003057.
-
T:=(n,k)->((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2: seq(seq(T(k,n-k),k=1..n-1),n=1..13); # Muniru A Asiru, Dec 06 2018
-
T[n_, k_] := ((n+k)^2 - 4k + 3 + (-1)^k - 2(-1)^n - (n+k)(-1)^(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t+2)*(-1)**t)/2
A024848
a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+4)/m < s for some integer k.
Original entry on oeis.org
19, 53, 103, 169, 251, 349, 463, 593, 739, 901, 1101, 1299, 1537, 1769, 2045, 2311, 2625, 2925, 3277, 3611, 4001, 4369, 4797, 5199, 5665, 6101, 6605, 7075, 7617, 8121, 8701, 9301, 9859, 10497, 11155, 11765, 12461, 13177, 13839, 14593, 15367, 16081, 16893, 17725
Offset: 2
-
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
TableForm[t]
t[[5]] (* A024848 *)
(* Peter J. C. Moses, Aug 06 2012 *)
Showing 1-3 of 3 results.
Comments