cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A214964 Least m > 0 such that for every r and s in the set S = {{h*(1+sqrt(5))/2} : h = 1,..,n} of fractional parts, if r < s, then r < k/m < s for some integer k; m is the least separator of S as defined at A001000.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 8, 10, 10, 13, 13, 13, 16, 16, 16, 21, 21, 21, 21, 21, 28, 30, 30, 30, 34, 34, 34, 34, 34, 34, 34, 34, 34, 43, 45, 50, 50, 50, 50, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 72, 73, 73, 73, 81, 81, 81, 81, 81, 81, 89, 89, 89, 89
Offset: 2

Views

Author

Clark Kimberling, Aug 12 2012

Keywords

Comments

a(n) is the least separator of S, as defined at A001000, which includes a guide to related sequences. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorShort[seq_, s_] := Module[{n = 1},
    While[Or @@ (n #1[[1]] <= s + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[seq, 2, 1], n++]; n];
    Table[leastSeparatorShort[Sort[N[FractionalPart[GoldenRatio*Range[n]], 50]], 1], {n, 2, 100}]
    (* Peter J. C. Moses, Aug 01 2012 *)

A214965 Least m > 0 such that for every r and s in the set S = {{h*e} : h = 1,..,n} of fractional parts, if r < s, then r < k/m < s for some integer k; m is the least separator of S as defined at A001000.

Original entry on oeis.org

2, 3, 4, 6, 6, 7, 11, 11, 11, 18, 18, 18, 18, 25, 25, 25, 25, 25, 25, 25, 25, 25, 32, 32, 32, 32, 32, 32, 32, 32, 32, 35, 35, 35, 39, 39, 39, 39, 55, 61, 61, 66, 68, 69, 69, 69, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71
Offset: 2

Views

Author

Clark Kimberling, Aug 12 2012

Keywords

Comments

a(n) is the least separator of S, as defined at A001000, which includes a guide to related sequences. - Clark Kimberling, Aug 12 2012

Examples

			Write the sorted fractional parts {h*e}, for h=1..5, as f1,f2,f3,f4,f5.  Then f1 < 2/6 < f2 < 3/6 < f3 < 4/6 < f5 < 5/6 < f6, and no such separation occurs using fractions k/m having m < 6; so a(5) = 6.
		

Crossrefs

Programs

  • Mathematica
    leastSeparatorShort[seq_, s_] := Module[{n = 1},
    While[Or @@ (n #1[[1]] <= s + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[seq, 2, 1], n++]; n];
    Table[leastSeparatorShort[Sort[N[FractionalPart[E*Range[n]], 50]], 1], {n, 2, 100}]
    (* Peter J. C. Moses, Aug 01 2012 *)

A024838 Least m such that if r and s in {1/3, 1/6, 1/9, ..., 1/3n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

Original entry on oeis.org

10, 25, 46, 73, 121, 166, 235, 295, 385, 460, 571, 661, 793, 937, 1054, 1219, 1396, 1537, 1735, 1945, 2110, 2341, 2584, 2773, 3037, 3313, 3601, 3826, 4135, 4456, 4789, 5047, 5401, 5767, 6145, 6436, 6835, 7246, 7669, 7993, 8437, 8893, 9361, 9841, 10210, 10711, 11224
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(3*Range[50]), #] &, Range[5]];
    t[[2]] (* A024838 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024836 a(n) = least m such that if r and s in {1/1, 1/4, 1/7, ..., 1/(3n-2)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

Original entry on oeis.org

3, 13, 29, 51, 92, 131, 193, 248, 331, 401, 505, 590, 715, 852, 963, 1121, 1291, 1427, 1618, 1821, 1981, 2205, 2441, 2625, 2882, 3151, 3361, 3651, 3953, 4267, 4511, 4846, 5193, 5552, 5829, 6209, 6601, 7005, 7315, 7740, 8177, 8626, 9087, 9441, 9923, 10417, 10923, 11441
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(3*Range[50]-2), #] &, Range[5]];
    t[[2]] (* A024836 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024837 a(n) = least m such that if r and s in {1/2, 1/5, 1/8, ..., 1/(3n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

Original entry on oeis.org

7, 21, 41, 67, 100, 155, 205, 281, 346, 443, 523, 641, 737, 876, 1027, 1149, 1321, 1505, 1651, 1856, 2073, 2243, 2481, 2731, 2993, 3197, 3480, 3775, 4082, 4321, 4649, 4989, 5341, 5613, 5986, 6371, 6768, 7073, 7491, 7921, 8363, 8702, 9165, 9640, 10127, 10626, 11009
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(3*Range[50]-1), #] &, Range[5]];
    t[[2]] (* A024837 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024847 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+4)/m < s for some integer k.

Original entry on oeis.org

8, 34, 76, 134, 208, 298, 404, 526, 664, 818, 1009, 1198, 1427, 1651, 1918, 2176, 2481, 2773, 3116, 3442, 3823, 4183, 4602, 4996, 5453, 5881, 6376, 6838, 7371, 7867, 8438, 8969, 9578, 10207, 10791, 11458, 12145, 12781, 13506, 14251, 14939, 15722, 16525, 17265
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
    t[[5]] (* A024847 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024832 Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.

Original entry on oeis.org

2, 3, 7, 10, 17, 21, 31, 43, 50, 65, 82, 91, 111, 133, 157, 170, 197, 226, 257, 273, 307, 343, 381, 421, 442, 485, 530, 577, 626, 651, 703, 757, 813, 871, 931, 962, 1025, 1090, 1157, 1226, 1297, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1850, 1937, 2026, 2117, 2210, 2305
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012

Crossrefs

Programs

  • Mathematica
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Flatten[Table[Pi/2 - ArcTan[h], {h, 1, 60}]]; leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)

A024834 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

Original entry on oeis.org

4, 13, 26, 43, 64, 100, 133, 183, 226, 290, 343, 421, 484, 576, 676, 757, 871, 993, 1090, 1226, 1370, 1483, 1641, 1807, 1936, 2116, 2304, 2500, 2653, 2863, 3081, 3307, 3482, 3722, 3970, 4226, 4423, 4693, 4971, 5257, 5476, 5776, 6084, 6400, 6724, 6973, 7311, 7657, 8011
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50] - 1), #] &, Range[5]];
    t[[2]] (* A024834 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024835 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

Original entry on oeis.org

7, 17, 31, 49, 81, 111, 157, 197, 257, 307, 381, 441, 529, 625, 703, 813, 931, 1025, 1157, 1297, 1407, 1561, 1723, 1849, 2025, 2209, 2401, 2551, 2757, 2971, 3193, 3365, 3601, 3845, 4097, 4291, 4557, 4831, 5113, 5329, 5625, 5929, 6241, 6561, 6807, 7141, 7483, 7833
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
    t[[2]] (* A024835 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024841 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.

Original entry on oeis.org

5, 19, 41, 71, 109, 155, 222, 287, 376, 460, 571, 673, 806, 926, 1081, 1219, 1396, 1552, 1751, 1926, 2147, 2380, 2584, 2839, 3106, 3338, 3627, 3928, 4188, 4511, 4846, 5134, 5491, 5860, 6176, 6567, 6970, 7385, 7740, 8177, 8626, 9087, 9481, 9964, 10459, 10966, 11398
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
    t[[3]] (* A024841 *)
    (* Peter J. C. Moses, Aug 06 2012 *)
Showing 1-10 of 36 results. Next