cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024862 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = natural numbers, t = odd natural numbers.

Original entry on oeis.org

3, 5, 17, 23, 50, 62, 110, 130, 205, 235, 343, 385, 532, 588, 780, 852, 1095, 1185, 1485, 1595, 1958, 2090, 2522, 2678, 3185, 3367, 3955, 4165, 4840, 5080, 5848, 6120, 6987, 7293, 8265, 8607, 9690, 10070, 11270, 11690, 13013, 13475, 14927, 15433, 17020, 17572, 19300
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A058187.

Programs

  • Magma
    [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48: n in [2..50]]; // G. C. Greubel, Apr 19 2023
    
  • Mathematica
    CoefficientList[Series[(3+2x+3x^2)/((1+x)^3 (1-x)^4), {x,0,50}], x] (* Vincenzo Librandi, Sep 25 2013 *)
  • PARI
    Vec(x^2*(3+2*x+3*x^2)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016
    
  • SageMath
    [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48 for n in range(2,51)] # G. C. Greubel, Apr 19 2023

Formula

G.f.: x^2*(3+2*x+3*x^2) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-2) + 2*A058187(n-3) + 3*A058187(n-4). - R. J. Mathar, Sep 25 2013
From Colin Barker, Jan 29 2016: (Start)
a(n) = (8*n^3 + 6*(-1)^n*n^2 + 12*n^2 + 6*(-1)^n*n - 2*n + 3*(-1)^n - 3)/48.
a(n) = (4*n^3 + 9*n^2 + 2*n)/24 for n even.
a(n) = (4*n^3 + 3*n^2 - 4*n - 3)/24 for n odd. (End)
E.g.f.: (1/48)*(3*(1 - 4*x + 2*x^2)*exp(-x) + (-3 + 18*x + 36*x^2 + 8*x^3)*exp(x)). - G. C. Greubel, Apr 19 2023