cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025013 Central octonomial coefficients: largest coefficient of (1+x+...+x^7)^n.

Original entry on oeis.org

1, 1, 8, 48, 344, 2460, 18152, 134512, 1012664, 7635987, 58199208, 443658688, 3409213016, 26184550496, 202384723528, 1562970918720, 12133130451576, 94094281551304, 732910480638272, 5702603044247504, 44538031693977544
Offset: 0

Views

Author

Keywords

Comments

Generally, largest coefficient of (1+x+...+x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - Vaclav Kotesovec, Aug 09 2013

Crossrefs

Row 8 of A077042.

Programs

  • Maple
    seq(add((-1)^k * binomial(n, k)*binomial(n+floor(7*n/2)-8*k-1, n-1), k = 0..floor(n/2) ), n = 0..20); # Peter Bala, Oct 15 2024
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,7}]^n],x^Floor[7*n/2]],{n,1,20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)

Formula

a(n) ~ 8^n * sqrt(2/(21*Pi*n)). - Vaclav Kotesovec, Aug 09 2013
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k * binomial(n, k)*binomial(n+floor(7*n/2)-8*k-1, n-1). - Peter Bala, Oct 15 2024