cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060540 Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021

Examples

			Array begins:
  1,   1,       1,          1,             1,                 1, ...
  1,   3,      10,         35,           126,               462, ...
  1,  15,     280,       5775,        126126,           2858856, ...
  1, 105,   15400,    2627625,     488864376,       96197645544, ...
  1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
  ...
		

Crossrefs

Main diagonal is A057599.
Related to A057599, see also A096126 and A246048.
Cf. A060358, A361948 (includes row/col 0).
Cf. A000217, A000292, A000332, A000389, A000579, A000580, A007318, A036040, A099174, A133314, A132440, A135278 (associations in Copeland link).

Programs

  • Mathematica
    T[n_, k_] := (n*k)!/(k!^n*n!);
    Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

T(n,k) = (n*k)!/(k!^n*n!) = T(n-1,k)*A060543(n,k) = A060538(n,k)/k!.
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014

Extensions

Definition reworded by M. F. Hasler, Aug 23 2014

A181386 Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 1, 1, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 15, 1, 4, 1, 1, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 15, 45, 15, 1, 10, 1, 1, 1, 1, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 21, 105, 105, 1, 20
Offset: 1

Views

Author

Frank M Jackson, Oct 16 2010

Keywords

Comments

The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.
From Frank M Jackson, Nov 20 2010: (Start)
C(r,mr,m) = C(r,mr-1,m-1).
C(1,m,m) = A000012, C(2,2m,m) = A001147,
C(3,3m,m), ..., C(10,10m,m) = A025035, ..., A025042.
C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.
C(r,2r,2) = A001700, C(r,3r,3) = A060542, C(r,4r,4) = A082368.
C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),
and applied recursively gives the identity
C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).
(End)
C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - Jonathan Sondow, Dec 29 2015

Examples

			r=1, C(1,n,m) is
  1
  1, 1
  1, 2,  1
  1, 3,  3,  1
  1, 4,  6,  4, 1
  1, 5, 10, 10, 5, 1
r=2, C(2,n,m) is
  1
  1
  1,  1
  1,  3
  1,  6,  3
  1, 10, 15
r=3, C(3,n,m) is
  1
  1
  1
  1,  1
  1,  4
  1, 10
		

Crossrefs

C(1,n,m) = T_1(n,m) = A007318, C(2,n,m) = T_2(n,m) = A100861, and C(2,26,m) = A266365.

Programs

  • Mathematica
    Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]

Formula

C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).
Showing 1-2 of 2 results.