cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025060 Numbers of the form i*j + j*k + k*i, where 1 <= i < j < k.

Original entry on oeis.org

11, 14, 17, 19, 20, 23, 26, 27, 29, 31, 32, 34, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 109
Offset: 1

Views

Author

Keywords

Comments

A025058 without duplicates.
Non-Idoneal Numbers. [Artur Jasinski, Oct 27 2008]
Conjecture: If i, j and k are allowed to be negative, but not zero, and are still distinct, then the sequence is all the integers. - Jon Perry, Apr 21 2013

Crossrefs

Cf. A000926 (complement), A025058, A093669.

Programs

  • Maple
    N:= 200: # to get all terms <= N
    sort(convert({seq(seq(seq(i*j + j*k + i*k, i=1..min(j-1, (N-j*k)/(j+k))),j=2..min(k-1,(N-k)/(1+k))),k=3..(N-2)/3)},list)); # Robert Israel, Sep 06 2016
  • Mathematica
    aa = {}; Do[Do[Do[k = a b + b c + c a; AppendTo[aa, a b + b c + c a], {a, 1, b - 1}], {b, 2, c - 1}], {c, 3, 10}]; Union[aa] (* Artur Jasinski, Oct 27 2008 *)
  • Python
    def aupto(N):
        aset = set()
        for i in range(1, N-1):
            for j in range(i+1, N//i + 1):
                p, s = i*j, i+j
                for k in range(j+1, (N-p)//s + 1):
                    aset.add(p + s*k)
        return sorted(aset)
    print(aupto(109)) # Michael S. Branicky, Nov 14 2021