cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A025062 Positions of even numbers in A025060 (numbers of form j*k + k*i + i*j, where 1 <= i < j < k).

Original entry on oeis.org

2, 5, 7, 11, 12, 14, 15, 19, 20, 23, 25, 27, 29, 32, 34, 36, 38, 42, 44, 47, 49, 51, 52, 55, 57, 58, 60, 62, 64, 67, 68, 70, 72, 75, 77, 79, 82, 84, 86, 88, 91, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 123, 126, 128, 130, 132, 133, 135, 137, 139, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(46)-a(56), a(58)-a(61), a(63)-a(67) corrected by Gionata Neri, Sep 06 2016

A025063 Positions of odd numbers in A025060 (numbers of form j*k + k*i + i*j, where 1 <= i < j < k).

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 13, 16, 17, 18, 21, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39, 40, 41, 43, 45, 46, 48, 50, 53, 54, 56, 59, 61, 63, 65, 66, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 89, 90, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 124, 125, 127, 129, 131
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(55)-a(70) corrected by Gionata Neri, Sep 06 2016

A025061 Positions of primes in A025060 (numbers of form j*k + k*i + i*j, where 1 <=i < j < k).

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 17, 18, 21, 26, 30, 31, 37, 40, 41, 46, 50, 54, 61, 65, 66, 69, 71, 74, 87, 90, 95, 97, 107, 109, 115, 121, 124, 129, 134, 136, 145, 147, 151, 153, 164, 176, 180, 182, 185, 191, 192, 202, 207, 213, 219, 221, 226, 229, 231, 241, 255, 259, 260, 264, 277, 283, 292, 294
Offset: 1

Views

Author

Keywords

Extensions

More terms and a(29)-a(48) corrected by Gionata Neri, Sep 06 2016

A025064 Position of numbers of form 3*n^2 in A025060 (numbers of form j*k + k*i + i*j, where 1 <=i < j < k).

Original entry on oeis.org

8, 43, 70, 105, 146, 194, 248, 307, 374, 448, 528, 615, 707, 805, 910, 1021, 1138, 1260, 1388, 1523, 1664, 1810, 1963, 2122, 2287, 2458, 2635, 2818, 3007, 3202, 3403, 3610, 3823, 4042, 4267, 4498, 4735, 4978
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    N:= 10000: # to get positions of all 3*n^2 <= N
    B:= sort(convert({seq(seq(seq(i*j + j*k + i*k, i=1..min(j-1, (N-j*k)/(j+k))),j=2..min(k-1,(N-k)/(1+k))),k=3..(N-2)/3)},list)):
    count:= 1:
    for n from 1 to floor(sqrt(N/3)) do
      if member(3*n^2,B,A[count]) then count:= count+1 fi
    od:
    seq(A[i],i=1..count-1); # Robert Israel, Sep 06 2016

Formula

It is conjectured that A000926 ends at 1848, in which case a(n) = 3*n^2+18*n-38 for all n >= 22. - Robert Israel, Sep 06 2016

Extensions

More terms and a(4)-a(7) corrected by Gionata Neri, Sep 06 2016

A093669 Numbers having a unique representation as ab+ac+bc, with 0 < a < b < c.

Original entry on oeis.org

11, 14, 17, 19, 20, 27, 32, 34, 36, 43, 46, 49, 52, 64, 67, 73, 82, 97, 100, 142, 148, 163, 193
Offset: 1

Views

Author

T. D. Noe, Apr 08 2004

Keywords

Comments

Are there more terms?
No more terms < 10^6. - Joerg Arndt, Oct 01 2017

Examples

			11 is on the list because 11 = 1*2+1*3+2*3.
		

References

Crossrefs

Cf. A000926 (numbers not of the form ab+ac+bc, 0

Programs

  • Mathematica
    oneSol={}; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>1, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt==1, AppendTo[oneSol, n]], {n, 10000}]; oneSol
  • Python
    from collections import Counter
    def aupto(N):
        acount = Counter()
        for i in range(1, N-1):
            for j in range(i+1, N//i + 1):
                p, s = i*j, i+j
                for k in range(j+1, (N-p)//s + 1):
                    acount.update([p + s*k])
        return sorted([k for k in acount if acount[k] == 1])
    print(aupto(10**5)) # Michael S. Branicky, Nov 14 2021

A025058 Numbers of form i*j + j*k + k*i, where 1 <=i < j < k, including repetitions.

Original entry on oeis.org

11, 14, 17, 19, 20, 23, 23, 26, 26, 27, 29, 29, 31, 31, 32, 34, 35, 35, 36, 38, 38, 39, 39, 41, 41, 41, 43, 44, 44, 44, 46, 47, 47, 47, 47, 49, 50, 50, 51, 51, 52, 53, 53, 54, 54, 55, 55, 56, 56, 56, 59, 59, 59, 59, 59, 61, 61, 62, 62, 62, 63, 63, 64, 65, 65
Offset: 1

Keywords

Examples

			11 is in the sequence because 11 = 1*2 + 2*3 + 3*1.
23 appears twice because 23 = 1*3 + 3*5 + 5*1 = 1*2 + 2*7 + 7*1.
		

Crossrefs

Cf. A025060 (without repetitions), A093669.

Programs

  • Python
    def aupto(N):
        alst = []
        for i in range(1, N-1):
            for j in range(i+1, N//i + 1):
                p, s = i*j, i+j
                for k in range(j+1, (N-p)//s + 1):
                    alst.append(p + s*k)
        return sorted(alst)
    print(aupto(65)) # Michael S. Branicky, Nov 14 2021
Showing 1-6 of 6 results.