cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025149 Number of partitions of n into distinct parts >= 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 15, 17, 20, 23, 27, 31, 36, 41, 47, 55, 62, 71, 81, 93, 105, 120, 135, 154, 174, 197, 221, 251, 281, 317, 356, 400, 447, 502, 561, 628, 701, 782, 871, 972, 1081, 1202, 1336, 1483, 1645, 1825, 2021, 2237, 2476, 2736
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025147.

Programs

  • Maple
    g:=product(1+x^(j), j=4..54): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Zerinvary Lajos, Mar 09 2007
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-3)*(i+4)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 4 &]; Table[d[n], {n, 12}] (* strict partitions, parts >= 4 *)
    Table[Length[d[n]], {n, 40}] (* A025149 for n >= 1 *)
    (* Clark Kimberling, Mar 07 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[(i-3)*(i+4)/2Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)

Formula

a(n) = A026824(n+3). - R. J. Mathar, Jul 31 2008
G.f.: Product_{j>=4} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: sum(n>=0, x^(n*(n+7)/2) / prod(k=1..n, 1-x^k) ); special case of g.f. for partitions into distinct parts >= L, sum(n>=0, x^(n*(n+2*L-1)/2) / prod(k=1..n, 1-x^k) ). - Joerg Arndt, Mar 24 2011
From Vaclav Kotesovec, Oct 22 2015: (Start)
a(n) + a(n+1) + a(n+2) + 2*a(n+3) + a(n+4) + a(n+5) + a(n+6) = A000009(n+6).
a(n) ~ 1/8 * A000009(n).
(End)

Extensions

More terms from N. J. A. Sloane, Sep 28 2008