cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025150 Number of partitions of n into distinct parts >= 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 20, 23, 26, 30, 35, 39, 45, 51, 58, 66, 75, 84, 96, 108, 122, 137, 155, 173, 195, 219, 245, 274, 307, 342, 383, 427, 475, 529, 589, 654, 727, 807, 894, 991, 1098, 1214, 1343, 1485, 1638, 1809, 1995
Offset: 0

Views

Author

Keywords

Examples

			a(12) = 2 because we have [12] and [7,5].
		

Crossrefs

Cf. A025147.

Programs

  • Maple
    g:=product(1+x^j,j=5..70)-1: gser:=series(g,x=0,60): seq(coeff(gser,x,n), n=1..53); # Emeric Deutsch, Apr 17 2006
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-4)*(i+5)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 5 &]; Table[d[n], {n, 16}] (* strict partitions, parts >= 5 *)
    Table[Length[d[n]], {n, 40}] (* A025150 for n >= 1 *)
    (* Clark Kimberling, Mar 07 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[(i-4)*(i+5)/2Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[Product[1+x^k, {k, 1, nmax}] / ((1+x)*(1+x^2)*(1+x^3)*(1+x^4)), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

G.f.: Product_{j>=5} (1+x^j). - Emeric Deutsch, Apr 17 2006
a(n) = A026825(n+4). - R. J. Mathar, Jul 31 2008
a(n) ~ exp(Pi*sqrt(n/3)) / (64*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
G.f.: Sum_{k>=0} x^(k*(k + 9)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020