cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025152 Number of partitions of n into distinct parts >= 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 26, 29, 33, 37, 42, 47, 53, 59, 67, 74, 83, 93, 104, 115, 129, 143, 160, 177, 197, 218, 243, 268, 297, 329, 364, 401, 444, 489, 540, 595, 655, 721, 794, 872, 958, 1053, 1156
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025147.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-6)*(i+7)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 7 &]; Table[d[n], {n, 20}] (* strict partitions, parts >= 7 *)
    Table[Length[d[n]], {n, 40}] (* A025152 for n >= 1 *)
    (* Clark Kimberling, Mar 07 2014 *)

Formula

a(n) = A026827(n+6). - R. J. Mathar, Jul 31 2008
G.f.: product_{j=7..infinity} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=0} x^(k*(k + 13)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020