cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025158 Number of partitions of n with distinct parts p(i) such that if i != j, then |p(i) - p(j)| >= 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 25, 28, 31, 35, 38, 43, 47, 53, 58, 65, 71, 80, 87, 97, 106, 118, 128, 142, 154, 170, 185, 203, 220, 242, 262, 287, 311, 340, 368, 402, 435, 474, 513, 558, 603, 656, 708, 768, 829, 898, 968, 1048
Offset: 1

Views

Author

Keywords

Comments

Also number of partitions of n such that if k is the largest part, then each 1,2,...,k-1 occur at least 4 times. Example: a(8)=3 because we have [2,2,1,1,1,1], [2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 17 2006

Examples

			a(8) = 3 because we have [8], [7,1] and [6,2].
		

Crossrefs

Column k=4 of A194543.

Programs

  • Maple
    g:=sum(x^(2*k^2-k)/product(1-x^j,j=1..k),k=1..7): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..66); # Emeric Deutsch, Apr 17 2006
  • Mathematica
    nmax = 100; Rest[CoefficientList[1 + Series[Sum[x^(j*(2*j - 1))/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 02 2016 *)

Formula

G.f.: Sum(x^(2*k^2-k)/Product(1-x^i, i=1..k), k=1..infinity). - Vladeta Jovovic, Aug 12 2004
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*n^(3/4)*sqrt(Pi*r^3*(1+4*r^3))), where r = 0.72449195900051561158837228218703656578649448135001101727... is the root of the equation r^4 + r = 1 and c = 2*log(r)^2 + polylog(2, 1-r) = 0.50498141294472195442598916817438524920370382784609501495065... . - Vaclav Kotesovec, Jan 02 2016

Extensions

More terms from Vladeta Jovovic, Aug 12 2004