cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A194543 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n into parts p_i such that |p_i - p_j| >= k for i != j.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 2, 2, 1, 1, 7, 3, 2, 2, 1, 1, 11, 4, 3, 2, 2, 1, 1, 15, 5, 3, 3, 2, 2, 1, 1, 22, 6, 4, 3, 3, 2, 2, 1, 1, 30, 8, 5, 4, 3, 3, 2, 2, 1, 1, 42, 10, 6, 4, 4, 3, 3, 2, 2, 1, 1, 56, 12, 7, 5, 4, 4, 3, 3, 2, 2, 1, 1, 77, 15, 9, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2011

Keywords

Comments

T(n,k) = 1 for n >= 0 and k >= n.
In general, column k > 0 is asymptotic to c^(1/4) * r * exp(2*sqrt(c*n)) / (2*sqrt(Pi*(1-r)*(r + k*(1-r))) * n^(3/4)), where r is the smallest real root of the equation r^k + r = 1 and c = k*log(r)^2/2 + polylog(2, 1-r). - Vaclav Kotesovec, Jan 02 2016

Examples

			T(7,3) = 3: [7], [6,1], [5,2].
T(23,6) = 11: [23], [22,1], [21,2], [20,3], [19,4], [18,5], [17,6], [16,7], [15,8], [15,7,1], [14,8,1].
Triangle begins:
   1;
   1, 1;
   2, 1, 1;
   3, 2, 1, 1;
   5, 2, 2, 1, 1;
   7, 3, 2, 2, 1, 1;
  11, 4, 3, 2, 2, 1, 1;
  15, 5, 3, 3, 2, 2, 1, 1;
		

Crossrefs

Columns 0-8 give: A000041, A000009, A003114, A025157, A025158, A025159, A025160, A025161, A025162. T(n,0)-T(n,1) = A047967(n).

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          if n<0 then 0
        elif n=0 then 1
        else add(b(n-i-j, i+j, k), j=k..n-i)
          fi
        end:
    T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
    seq(seq(T(n, k), k=0..n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n<0, 0, If[n == 0, 1, Sum[b[n-i-j, i+j, k], {j, k, n-i}]]]; T[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)

Formula

G.f. of column k: Sum_{j>=0} x^(j*((j-1)*k/2+1))/Product_{i=1..j} (1-x^i).

A179046 Partitions into distinct parts with minimal difference 3 and minimal part >= 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 23, 25, 28, 32, 35, 39, 44, 49, 54, 61, 67, 75, 83, 92, 101, 113, 123, 136, 150, 165, 180, 199, 217, 239, 261, 286, 312, 343, 373, 408, 445, 486, 528, 577, 626, 682, 741, 805, 873, 949, 1027, 1114
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2011

Keywords

Examples

			a(13)=4 because there are 4 such partitions of 13: 3+10=4+9=5+8=13.
a(0)=1 because the condition is void for the empty list.
		

Crossrefs

Cf. A003106 (min diff=2, min part=2), A000009 (min diff=1, min part=1).
Cf. A003114 (min diff=2), A025157 (min diff=3), A025158 (min diff=4), A025159 (min diff=5), A025160 (min diff=6), A025161 (min diff=7), A025162 (min diff=8).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(n>i*(i+1)/2-3, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i-3))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 02 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1,
      If[n > i(i+1)/2 - 3, 0, b[n, i - 1] +
      If[i > n, 0, b[n - i, i - 3]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 80] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N);
    gf = sum(n=0,N, x^(3*n*(n+1)/2)/prod(k=1,n,1-x^k));
    v = Vec(gf)
    /* Joerg Arndt, Apr 07 2011 */
  • Sage
    A179046 = lambda n: Partitions(n,max_slope=-3).filter(lambda x: not x or min(x) >= 3).cardinality() # D. S. McNeil, Jan 04 2011
    

Formula

G.f.: sum(n>=0, x^(3*n*(n+1)/2) / prod(k=1,n,1-x^k) ), this is a special case of the g.f. sum(n>=0, x^(D*n*(n+1)/2) / prod(k=1,n,1-x^k) ) for partitions into distinct parts with minimal difference D and minimal part >= D. - Joerg Arndt, Apr 07 2011
The g.f. for partitions into distinct parts with minimal difference D and no restriction on the minimal part is sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ). - Joerg Arndt, Mar 31 2014
Showing 1-2 of 2 results.