A025246 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4, with initial terms 1, 0, 1, 1.
1, 0, 1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, 438, 910, 1903, 4009, 8494, 18080, 38656, 82988, 178802, 386490, 837928, 1821664, 3970282, 8673258, 18987930, 41652382, 91539466, 201525238, 444379907, 981384125, 2170416738, 4806513660, 10657780276
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 666
Programs
-
Magma
[n le 2 select 2-n else (&+[Binomial(n-k-3, 2*k)*Catalan(k): k in [0..Floor((n-3)/3)]]): n in [1..45]]; // G. C. Greubel, Jun 15 2022
-
Maple
a := n -> ifelse(n < 3, 0^(n - 1), hypergeom([(3 - n)/3, (4 - n)/3, (5 - n)/3], [2, -n + 3], 27)): seq(simplify(a(n)), n = 1..32); # Peter Luschny, Jun 15 2022
-
Mathematica
a[n_]:= a[n]= If[n<4, 1-Boole[n==2], Sum[a[j]*a[n-j], {j,n-3}]]; Table[a[n], {n, 45}] (* G. C. Greubel, Jun 15 2022 *)
-
PARI
a(n)=polcoeff((1+x-sqrt(1-2*x+x^2-4*x^3+x*O(x^n)))/2,n)
-
SageMath
[bool(n==1) + sum(binomial(n-k-3,2*k)*catalan_number(k) for k in (0..((n-3)//3))) for n in (1..45)] # G. C. Greubel, Jun 15 2022
Formula
a(n) = A023431(n-3).
G.f.: (1+x-sqrt(1-2*x+x^2-4*x^3))/2. - Michael Somos, Jun 08 2000
n*a(n) = (2*n-3)*a(n-1) -(n-3)*a(n-2) +2*(2*n-9)*a(n-3). - R. J. Mathar, Feb 25 2015
a(n) = hypergeom([(3 - n)/3, (4 - n)/3, (5 - n)/3], [2, 3 - n], 27) for n >= 3. - Peter Luschny, Jun 15 2022
Comments