A025247 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4, with initial terms 2, 0, 1, 2.
2, 0, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350, 1764044315540
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Programs
-
Mathematica
Rest[CoefficientList[Series[(1+2x-Sqrt[1-4x+4x^2-4x^3])/2, {x,0,40}], x]] (* Harvey P. Dale, Apr 23 2011 *)
-
PARI
a(n)=polcoeff((2*x-sqrt(1-4*x+4*x^2-4*x^3+x*O(x^n)))/2,n)
Formula
G.f.: (1+2*x-sqrt(1-4*x+4*x^2-4*x^3))/2. - Michael Somos, Jun 08 2000
Conjecture: n*a(n) +2*(3-2*n)*a(n-1) +4*(n-3)*a(n-2) +2*(9-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012