cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A343197 Numbers k such that A025281(k) is prime.

Original entry on oeis.org

2, 3, 6, 16, 29, 30, 34, 35, 36, 39, 57, 59, 76, 77, 88, 94, 101, 112, 126, 166, 177, 192, 206, 228, 238, 248, 251, 258, 259, 260, 271, 275, 276, 282, 299, 317, 318, 333, 345, 347, 353, 354, 370, 378, 386, 391, 402, 407, 417, 437, 445, 452, 455, 466, 470, 475, 478, 489, 494, 499, 508, 521, 530
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 07 2021

Keywords

Comments

Numbers k such that A343196(k) = 1.

Examples

			a(4) = 16 is a term because A025281(16) = A001414(16!) = 101.
		

Crossrefs

Programs

  • Maple
    sopf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    R:= NULL: count:= 0: T:= 0:
    for n from 2 while count < 100 do
    T:= T + sopf(n);
    if isprime(T) then R:= R, n; count:= count+1 fi;
    od:
    R;
  • Mathematica
    Select[Range[2, 530], PrimeQ@ Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &[#!] &] (* Michael De Vlieger, Apr 07 2021 *)
  • Python
    from sympy import isprime, factorint
    A343197_list = [n for n in range(2,10**6) if isprime(sum(sum(p*e for p, e in factorint(i).items()) for i in range(2,n+1)))] # Chai Wah Wu, Apr 09 2021

A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.

Original entry on oeis.org

1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
		

Crossrefs

Compare with A049000. Note that a(n) = A049000(n) + A046915(n).
Cf. A000203 (sigma(n)), A072691 (Pi^2/12), A049000, A046915, A024916, A025281.

Programs

  • PARI
    for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
    
  • PARI
    A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
  • Python
    [(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
    
  • Python
    from math import isqrt
    def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
    

Formula

Asymptotic formula: a(n) ~ Pi^2/12 * 10^2n. See A072691 for Pi^2/12. Observe that A025281 also contains that constant in its asymptotic formula.

Extensions

More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008
Corrected by N. J. A. Sloane, Jun 08 2008, following suggestions from Don Reble and David W. Wilson

A343196 a(n) is the least positive number k such that Sum_{k<=j<=k+n-1} A001414(j) is prime.

Original entry on oeis.org

2, 1, 1, 3, 2, 1, 5, 3, 5, 3, 9, 3, 5, 4, 2, 1, 4, 8, 5, 13, 9, 6, 4, 6, 3, 15, 3, 2, 1, 1, 8, 22, 2, 1, 1, 1, 3, 2, 1, 9, 5, 9, 5, 3, 6, 3, 3, 5, 8, 5, 6, 31, 11, 9, 4, 2, 1, 2, 1, 3, 5, 4, 9, 9, 5, 5, 8, 9, 7, 3, 5, 3, 6, 10, 2, 1, 1, 3, 3, 6, 7, 10, 44, 17, 51, 4, 2, 1, 3, 8, 12, 16, 2, 1, 8
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 07 2021

Keywords

Comments

a(n) is the first k such that the sum of primes, with repetition, dividing (k+n-1)!/(k-1)! is prime.

Examples

			a(4) = 3 because A001414(3) + A001414(4) + A001414(5) + A001414(6) = 17 is prime.
		

Crossrefs

Programs

  • Maple
    sopf:= proc(n) option remember; local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    f:= proc(n) local j,t,i;
      t:= add(sopf(i),i=1..n);
      for j from 1  do
        if isprime(t) then return j fi;
        t:= t + sopf(j+n)-sopf(j)
      od
    end proc:
    map(f, [$1..100]);

A356646 Numbers k such that the integer log of k! is a perfect power.

Original entry on oeis.org

4, 8, 27, 31, 575, 669, 1201, 2505, 4784, 7618, 35710, 65005, 166422, 870062, 994086, 1105670, 1209538, 2140133, 3020610, 9147713, 9404277, 14492743, 16792162, 18566766, 19445469, 21264479, 46483343, 109424090, 292374429, 293351547, 362681674, 399576585, 450622855
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 19 2022

Keywords

Comments

Numbers k such that A025281(k) is a perfect power.
Numbers k such that A356631(k) = 1.

Examples

			a(2) = 8 because the integer log of 8! = 2^7 * 3^2 * 5 * 7 is 2*7 + 3*2 + 5 + 7 = 32 = 2^5 is a perfect power.
		

Crossrefs

Programs

  • Maple
    spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc:s:= 0: R:= NULL: count:= 0:
    for i from 1 while count < 27 do
      s:= s+spf(i);
      if ispow(s) then
        count:= count+1; R:= R,i;
      fi
    od:
    R;
  • Mathematica
    Select[Range[8000], GCD @@ FactorInteger[Plus @@ Times @@@ FactorInteger[#!]][[;; , 2]] > 1 &] (* Amiram Eldar, Aug 26 2022 *)
  • Python
    from itertools import count, islice, accumulate
    from math import prod
    from sympy import perfect_power, factorint
    def A356646_gen(): # generator of terms
        return (a+2 for a, b in enumerate(accumulate(sum(prod(d) for d in factorint(n).items()) for n in count(2))) if perfect_power(b))
    A356646_list = list(islice(A356646_gen(),10)) # Chai Wah Wu, Aug 28 2022

Extensions

a(28)-a(33) from Chai Wah Wu, Aug 28 2022

A061708 Smallest number whose square has (2n - 1)^2 divisors.

Original entry on oeis.org

1, 6, 36, 216, 210, 7776, 46656, 1260, 1679616, 10077696, 7560, 362797056, 44100, 18480, 78364164096, 470184984576, 272160, 264600, 101559956668416, 1632960, 3656158440062976, 21936950640377856, 180180, 789730223053602816, 9261000, 58786560, 170581728179578208256
Offset: 1

Views

Author

Labos Elemer, Jun 19 2001

Keywords

Comments

a(n) <= 6^(n-1); 36^(n-1) has (2n-1)^2 divisors for all n.

Examples

			For n = 8, a(8) = 1260 = 2*2*3*3*5*7 and d(1260^2) = d(2*2*2*2*3*3*3*3*5*5*7*7) = 225 = (2*8-1)^2.
For n = 14, a(14) = 18480 and d((2*2*2*2*2*2*2*2*3*5*7*11)^2) = 729 = (2*14-1)^2.
		

Crossrefs

Formula

a(n) = Min_{x : d(x^2) = (2n-1)^2};
a(n) = Min_{x : A000005(A000290(x)) = A000290(A005408(n))}.

Extensions

More terms from David Wasserman, Jun 24 2002
Edited by Charlie Neder, Jun 03 2019
a(26)-a(27) from Amiram Eldar, Dec 03 2023

A343424 Numbers k such that sopfr((k-1)!) is divisible by k, where sopfr(k) = A001414(k) = sum of primes, with repetition, dividing k.

Original entry on oeis.org

1, 2, 45, 53, 177, 436, 1239, 3651, 6463, 6869, 10753, 19450, 29721, 33289, 88907, 93682, 1137232, 1516121, 4361271, 9428534, 43778664, 74738670, 271442366, 775223371, 835126289, 1736463189, 3088442241, 5054888590, 11184483614, 16993011938, 30788570768, 33342871740
Offset: 1

Views

Author

Scott R. Shannon, Apr 15 2021

Keywords

Comments

See A025281(k-1) for the values of sopfr((k-1)!).

Examples

			45 is a term as sopfr(44!) = 585 which is divisible by 45.
		

Crossrefs

Programs

  • Mathematica
    sopfr[0] = sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; sum = 0; s = {}; Do[sum += sopfr[n]; If[Divisible[sum, n + 1], AppendTo[s, n + 1]], {n, 0, 10^6}]; s (* Amiram Eldar, May 06 2021 *)
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    isok(k) = !(sopfr((k-1)!) % k); \\ Michel Marcus, May 06 2021

Extensions

a(27) from Amiram Eldar, May 06 2021
a(28) and beyond from Martin Ehrenstein, May 16 2021

A065131 Arithmetic mean of first n terms of A001414 is an integer.

Original entry on oeis.org

2, 8, 18, 26, 27, 53, 344, 539, 1221, 6869, 7271, 10753, 17742, 33289, 59688, 156649, 949350, 2291181, 3115026, 3283468, 4148225, 4493333, 18012397, 80433020, 218082214, 268274214, 639257836, 4081484513, 9373412685, 28315174578, 43438521639, 208170358834
Offset: 1

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Examples

			Sum of first 18 terms of A001414 gives A025281(18)=126 which is divisible by n=18, so 18 is a term: 0+2+3+4+5+5+7+6+6+7+11+7+13+9+8+8+17+8=126=7*18,
		

Crossrefs

Programs

  • Mathematica
    s=0; Do[s=s+lg[n]; If[IntegerQ[n/25000], Print[n]]; If[IntegerQ[s/n], Print[{n, s, s/n}]], {n, 2, 2000000}] where lg[n]=A001414(n).

Formula

A025281(n)/n is an integer, where A025281(n+1)=A025281(n)+A001414(n) and A001414 is sum of primes dividing n (with repetition).

Extensions

a(21)-a(29) from Donovan Johnson, Apr 25 2010
a(30)-a(31) from Donovan Johnson, Jun 11 2011
a(32) from Donovan Johnson, Feb 26 2014
Showing 1-7 of 7 results.