cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343986 Numbers that are the sum of four positive cubes in exactly five ways.

Original entry on oeis.org

5105, 5131, 5616, 5859, 6435, 7777, 9315, 9737, 9793, 10017, 10250, 10458, 10936, 10962, 11000, 11060, 11088, 11592, 11664, 11781, 12168, 12229, 12285, 12320, 12385, 12392, 12707, 13384, 13734, 13832, 13904, 14183, 14239, 14833, 15176, 15596, 15624, 15752, 15759, 15778, 16093, 16289, 16354, 16480, 16569
Offset: 1

Views

Author

David Consiglio, Jr., May 06 2021

Keywords

Comments

Differs from A343987 at term 6 because 6883 = 2^3 + 2^3 + 2^3 + 19^3 = 2^3 + 5^3 + 15^3 + 15^3 = 3^3 + 8^3 + 8^3 + 18^3 = 4^3 + 11^3 + 14^3 + 14^3 = 5^3 + 11^3 + 11^3 + 16^3 = 8^3 + 9^3 + 9^3 + 17^3.

Examples

			5616 is a term because 5616 = 1^3 + 8^3 + 12^3 + 15^3 = 2^3 + 8^3 + 10^3 + 16^3 = 4^3 + 4^3 + 14^3 + 14^3 = 4^3 + 5^3 + 11^3 + 16^3 = 8^3 + 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])

A025370 Numbers that are the sum of 4 nonzero squares in 5 or more ways.

Original entry on oeis.org

82, 90, 100, 102, 103, 106, 108, 111, 114, 115, 117, 118, 122, 124, 126, 127, 130, 132, 133, 135, 138, 143, 145, 147, 148, 150, 151, 153, 154, 156, 157, 159, 162, 163, 165, 166, 167, 169, 170, 171, 172, 174, 175, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 5}. Union of A025371 and A025361. - R. J. Mathar, Jun 15 2018

A025380 Numbers that are the sum of 4 distinct nonzero squares in exactly 5 ways.

Original entry on oeis.org

126, 150, 170, 186, 219, 225, 230, 242, 249, 250, 261, 267, 274, 275, 278, 287, 295, 297, 305, 311, 314, 319, 321, 322, 323, 325, 343, 346, 347, 361, 377, 379, 383, 401, 419, 421, 427, 437, 457, 463, 467, 468, 493, 500, 504, 509, 517, 523, 524, 577, 600, 680, 724, 744
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 100000: # for terms <= N
    G:= mul(1+x^(i^2)*y, i=1..floor(sqrt(N))):
    G4:= series(coeff(G,y,4),x,N+1):
    select(t -> coeff(G4,x,t) = 5, [$1..N]): # Robert Israel, Nov 19 2023

Formula

{n: A025443(n) = 5}. - R. J. Mathar, Jun 15 2018
Showing 1-3 of 3 results.