A025442 Number of partitions of n into 3 distinct nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 2, 2, 1, 0, 1, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 1, 2, 1, 1
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n,i,t) option remember; `if`(n=0, `if`(t=0,1,0), `if`(i<1 or t<1, 0, `if`(i=1, 0, b(n,i-1,t))+ `if`(i^2>n, 0, b(n-i^2,i-1,t-1)))) end: a:= n-> b(n, isqrt(n), 3): seq(a(n), n=0..120); # Alois P. Heinz, Feb 07 2013
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[i<1 || t<1, 0, If[i==1, 0, b[n, i-1, t]] + If[i^2 > n, 0, b[n-i^2, i-1, t-1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 3]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Oct 10 2015, after Alois P. Heinz *)
-
PARI
A025442(n)={sum(x=1,sqrtint(n\3),sum(y=x+1,sqrtint((n-1-x^2)\2),issquare(n-x^2-y^2)))} \\ - M. F. Hasler, Feb 03 2013
Formula
a(n)>0 <=> n is in A004432. - M. F. Hasler, Feb 03 2013
a(n) = [x^n y^3] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019