A025453 Number of partitions of n into 9 nonnegative cubes.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 3
Offset: 0
Keywords
Examples
a(8) = 2 via 8*0^3 + 1*2^3 = 1 * 0^3 + 8*1^3.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= proc(x,m,M) local i; option remember; if x = 0 then return 1 elif m = 0 then return 0 fi; add(procname(x-i^3, m-1, i), i=1..min(M,floor(x^(1/3)))); end proc: map(f, [$0..150],9,150); # Robert Israel, Jan 23 2025
-
PARI
first(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0
David A. Corneth, Jan 23 2025