A025457 Number of partitions of n into 4 positive cubes.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Keywords
Links
Programs
-
Maple
N:= 100; A:= Array(0..N); for a from 1 to floor(N^(1/3)) do for b from a to floor((N-a^3)^(1/3)) do for c from b to floor((N-a^3-b^3)^(1/3)) do for d from c to floor((N-a^3-b^3-c^3)^(1/3)) do n:= a^3 + b^3 + c^3 + d^3; A[n]:= A[n]+1; od od od od: seq(A[n],n=0..N); # Robert Israel, Aug 18 2014 A025457 := proc(n) local a,x,y,z,ucu ; a := 0 ; for x from 1 do if 4*x^3 > n then return a; end if; for y from x do if x^3+3*y^3 > n then break; end if; for z from y do if x^3+y^3+2*z^3 > n then break; end if; ucu := n-x^3-y^3-z^3 ; if isA000578(ucu) then a := a+1 ; end if; end do: end do: end do: end proc: # R. J. Mathar, Sep 15 2015
-
Mathematica
r[n_] := Reduce[0 < a <= b <= c <= d && n == a^3+b^3+c^3+d^3, {a, b, c, d}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Feb 26 2019 *)
Formula
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
Extensions
Second offset from Michel Marcus, Apr 23 2019
Comments