cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025457 Number of partitions of n into 4 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

The first term > 1 is a(219) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Cf. A003108, A025455, A025456, A025403-A025407, A003327, A025420 (greedy inverse).

Programs

  • Maple
    N:= 100;
    A:= Array(0..N);
    for a from 1 to floor(N^(1/3)) do
      for b from a to floor((N-a^3)^(1/3)) do
         for c from b to floor((N-a^3-b^3)^(1/3)) do
            for d from c to floor((N-a^3-b^3-c^3)^(1/3)) do
              n:= a^3 + b^3 + c^3 + d^3;
              A[n]:= A[n]+1;
    od od od od:
    seq(A[n],n=0..N); # Robert Israel, Aug 18 2014
    A025457 := proc(n)
        local a,x,y,z,ucu ;
        a := 0 ;
        for x from 1 do
            if 4*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+3*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+2*z^3 > n then
                        break;
                    end if;
                    ucu := n-x^3-y^3-z^3 ;
                    if isA000578(ucu) then
                        a := a+1 ;
                    end if;
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    r[n_] := Reduce[0 < a <= b <= c <= d && n == a^3+b^3+c^3+d^3, {a, b, c, d}, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
    Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Feb 26 2019 *)

Formula

a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019