cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025459 Number of partitions of n into 6 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A025459 := proc(n)
        local a,x,y,z,u,v,wcu ;
        a := 0 ;
        for x from 1 do
            if 6*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+5*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+4*z^3 > n then
                        break;
                    end if;
                    for u from z do
                        if x^3+y^3+z^3+3*u^3 > n then
                            break;
                        end if;
                        for v from u do
                            if x^3+y^3+z^3+u^3+2*v^3 > n then
                                break;
                            end if;
                            wcu := n-x^3-y^3-z^3-u^3-v^3 ;
                            if isA000578(wcu) then
                                a := a+1 ;
                            end if;
                        end do:
                    end do:
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
    # Alternative:
    N:= 200:
    G:= mul(1/(1-y*x^(k^3)),k=1..floor(N^(1/3))):
    C6:= coeff(series(G,y,7),y,6):
    S:= series(C6,x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, May 10 2020
  • Mathematica
    a[n_] := Count[PowersRepresentations[n, 6, 3], pr_List /; FreeQ[pr, 0]];
    a /@ Range[0, 200] (* Jean-François Alcover, Jun 22 2020 *)
    Table[Count[IntegerPartitions[n,{6}],?(AllTrue[Surd[#,3],IntegerQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jun 06 2021 *)

Formula

a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019