A025459 Number of partitions of n into 6 positive cubes.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0
Offset: 0
Keywords
Links
Programs
-
Maple
A025459 := proc(n) local a,x,y,z,u,v,wcu ; a := 0 ; for x from 1 do if 6*x^3 > n then return a; end if; for y from x do if x^3+5*y^3 > n then break; end if; for z from y do if x^3+y^3+4*z^3 > n then break; end if; for u from z do if x^3+y^3+z^3+3*u^3 > n then break; end if; for v from u do if x^3+y^3+z^3+u^3+2*v^3 > n then break; end if; wcu := n-x^3-y^3-z^3-u^3-v^3 ; if isA000578(wcu) then a := a+1 ; end if; end do: end do: end do: end do: end do: end proc: # R. J. Mathar, Sep 15 2015 # Alternative: N:= 200: G:= mul(1/(1-y*x^(k^3)),k=1..floor(N^(1/3))): C6:= coeff(series(G,y,7),y,6): S:= series(C6,x,N+1): seq(coeff(S,x,i),i=0..N); # Robert Israel, May 10 2020
-
Mathematica
a[n_] := Count[PowersRepresentations[n, 6, 3], pr_List /; FreeQ[pr, 0]]; a /@ Range[0, 200] (* Jean-François Alcover, Jun 22 2020 *) Table[Count[IntegerPartitions[n,{6}],?(AllTrue[Surd[#,3],IntegerQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jun 06 2021 *)
Formula
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019