A025469 Number of partitions of n into 3 distinct positive cubes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
From _Antti Karttunen_, Aug 29 2017: (Start) For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1. For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one. (End)
Links
Crossrefs
Programs
-
Maple
A025469 := proc(n) local a, x, y, zcu ; a := 0 ; for x from 1 do if 3*x^3 > n then return a; end if; for y from x+1 do if x^3+2*y^3 > n then break; end if; zcu := n-x^3-y^3 ; if zcu > y^3 and isA000578(zcu) then a := a+1 ; end if; end do: end do: end proc: seq(A025469(n),n=1..80) ; # R. J. Mathar, Jun 15 2018
-
Mathematica
Table[Count[IntegerPartitions[n, {3}], ?(And[UnsameQ @@ #, AllTrue[#, IntegerQ[#^(1/3)] &]] &)], {n, 105}] (* _Michael De Vlieger, Aug 29 2017 *)
-
PARI
A025469(n) = { my(s=0); for(x=1,n,if(ispower(x,3),for(y=x+1,n-x,if(ispower(y,3),for(z=y+1,n-(x+y),if((ispower(z,3)&&(x+y+z)==n),s++)))))); (s); }; \\ Antti Karttunen, Aug 29 2017
Comments