cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A024975 Sums of three distinct positive cubes.

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A003072. Equals A024973 if duplicates of repeated entries are removed. - R. J. Mathar, Apr 13 2008

Crossrefs

Cf. A122723 (primes in here), A025399-A025402, A025411 (4 distinct positive cubes).

Programs

  • Mathematica
    Total/@Subsets[Range[10]^3,{3}]//Union (* Harvey P. Dale, Aug 22 2021 *)
  • PARI
    list(lim)=my(v=List(),x3,t); lim\=1; for(x=3,sqrtnint(lim-9,3), x3=x^3; for(y=2,min(x-1,sqrtnint(lim-x3-1,3)), t=x3+y^3; for(z=1,min(y-1,sqrtnint(lim-t,3)), listput(v,t+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 20 2016

Formula

{n: A025469(n) >= 1}. - R. J. Mathar, Jun 15 2018

Extensions

Verified by Don Reble, Nov 19 2006

A025419 Least sum of 3 distinct positive cubes in exactly n ways.

Original entry on oeis.org

36, 1009, 5104, 13896, 161568, 1296378, 2016496, 2562624, 14926248, 34012224, 69190848, 150547032, 119095488, 1204376256, 952763904, 1592865000, 3974344704, 2176782336, 10077696000, 2985984000, 36330467328, 30723115968, 23887872000, 17414258688, 72825163776, 75686967000, 204141384000, 62099136000, 139314069504, 245784927744, 80621568000, 191102976000, 272097792000, 373248000000
Offset: 1

Views

Author

Keywords

Comments

a(36) = 496793088000. a(37) = 980922617856. a(38) = 209584584000. a(39) = 644972544000. a(42) = 970299000000. - Donovan Johnson, Nov 13 2010

Crossrefs

Cf. A025418.

Formula

{min k: A025469(k) = n}. - R. J. Mathar, Jun 15 2018

Extensions

a(6)-a(34) from Donovan Johnson, Nov 13 2010

A024974 Numbers that are the sum of 3 distinct positive cubes in 2 or more ways.

Original entry on oeis.org

1009, 1366, 1457, 1520, 1737, 1756, 1793, 1854, 1945, 2072, 2241, 2456, 2736, 3060, 3592, 3599, 3745, 3926, 4105, 4131, 4168, 4229, 4320, 4376, 4437, 4447, 4473, 4616, 4733, 4922, 5104, 5130, 5435, 5472, 5643, 5706, 5825, 5832, 6183, 6301, 6642, 6848
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1009 = 1^3+2^3+10^3 = 4^3+6^3+9^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Cf. A025400 (exactly 2 ways), A008917 (not necessarily distinct)

Formula

{n: A025469(n) >= 2}. - R. J. Mathar, Jun 15 2018

A025400 Numbers that are the sum of 3 distinct positive cubes in exactly 2 ways.

Original entry on oeis.org

1009, 1366, 1457, 1520, 1737, 1756, 1793, 1854, 1945, 2072, 2241, 2456, 2736, 3060, 3592, 3599, 3745, 3926, 4105, 4131, 4168, 4229, 4320, 4376, 4437, 4447, 4473, 4616, 4733, 4922, 5130, 5435, 5472, 5643, 5706, 5825, 5832, 6183, 6301, 6642, 6848, 6904
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025397 (not necessarily distinct)

Programs

  • Mathematica
    Reap[ For[n = 1, n <= 7000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 && Length[#] == Length[Union[#]] &] ; If[pr != {} && Length[pr] == 2, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
    Module[{nn=20},Select[Tally[Total/@Subsets[Range[nn]^3,{3}]],#[[2]]==2 && #[[1]]<= nn^3-9&][[All,1]]]//Union (* Harvey P. Dale, Apr 26 2020 *)

Formula

{n: A025469(n) = 2}. - R. J. Mathar, Jun 15 2018

A025468 a(n) is the number of partitions of n into 2 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 with x > y > 0. The first value > 1 is a(1729) = 2. - Antti Karttunen, Aug 29 2017

Crossrefs

Programs

Formula

From Antti Karttunen, Aug 28-29 2017: (Start)
a(n) = A025465(n) - A025469(n).
a(n) <= A025455(n).
(End)

A025399 Numbers that are the sum of 3 distinct positive cubes in exactly 1 way.

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025395 (not necessarily distinct), A024973.

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 && Length[#] == Length[Union[#]] &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

A024975 MINUS A024974. - R. J. Mathar, May 28 2008
{n: A025469(n) = 1}. - R. J. Mathar, Jun 15 2018

A025402 Numbers that are the sum of 3 distinct positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12384, 13896, 14175, 17604, 17928, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 42056, 43408, 44946, 45144, 46593, 46684
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025398.

Formula

{n: A025469(n) >= 3}. - R. J. Mathar, Jun 15 2018

A025401 Numbers that are the sum of 3 distinct positive cubes in exactly 3 ways.

Original entry on oeis.org

5104, 9729, 12104, 12384, 14175, 17604, 17928, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 36288, 38259, 39339, 39376, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 42056, 43408, 45144, 46593, 46684, 46747, 46808, 47683
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025397 (not necessarily distinct)

Programs

  • Mathematica
    Reap[For[n = 1, n <= 50000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 && Length[#] == Length[Union[#]] &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

{n: A025469(n) = 3}. - R. J. Mathar, Jun 15 2018

A025465 Number of partitions of n into 3 distinct nonnegative cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z >= 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 9 there is one solution: 9 = 2^3 + 1^3 + 0^3, thus a(9) = 1.
For n = 855 there are two solutions: 855 = 9^3 + 5^3 + 1^3 = 8^3 + 7^3 + 0^3, thus a(855) = 2. This is also the first point where sequence attains value greater than one.
(End)
From _Harvey P. Dale_, Sep 30 2018: (Start)
In addition to 855, the following numbers attain the value of 2: 1009, 1072, 1366, 1457, and there are 73 more such numbers less than 10000.
The first two numbers to attain the value of 3 are 5104 and 9729.
There are no numbers up to 10000 that attain a value greater than 3.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FindInstance[{n==x^3+y^3+z^3,x>y>z>=0},{x,y,z},Integers,5]],{n,0,110}] (* Harvey P. Dale, Sep 30 2018 *)
  • PARI
    A025465(n) = { my(s=0); for(x=0,n,if(ispower(x,3),for(y=x+1,n-x,if(ispower(y,3),for(z=y+1,n-(x+y),if((ispower(z,3)&&(x+y+z)==n),s++)))))); (s); }; \\ Antti Karttunen, Aug 29 2017

Formula

a(n) = A025468(n) + A025469(n).

A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube.

Original entry on oeis.org

36, 1009, 12384, 82278, 746992, 5401404, 15685704, 26936064, 137763072, 251066304, 857520000, 618817536, 3032856000, 2050677000, 6100691904, 36013192704, 16405416000, 96569712000, 48805535232, 131243328000, 611996202000, 201153672000
Offset: 1

Views

Author

Gleb Ivanov, Aug 29 2021

Keywords

Comments

No cube should appear in two or more sums. 5104 = 15^3 + 10^3 + 9^3 = 15^3 + 12^3 + 1^3 = 16^3 + 10^3 + 2^3 is not a(3), because 15^3 appears in more than one sum.

Examples

			a(1) = 36 = 1^3 + 2^3 + 3^3.
a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3.
		

Crossrefs

Programs

  • Mathematica
    Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* Giorgos Kalogeropoulos, Sep 03 2021 *)

Extensions

a(13)-a(15) from Jon E. Schoenfield, Sep 02 2021
a(16)-a(22) from Gleb Ivanov, Sep 12 2021
Showing 1-10 of 10 results.