cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025469 Number of partitions of n into 3 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z > 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1.
For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one.
(End)
		

Crossrefs

Cf. A025465 (not necessarily distinct), A025468, A025419 (greedy inverse).
Cf. A024975 (positions of nonzero terms), A024974 (positions of terms > 1), A025399-A025402.

Programs

Formula

a(n) = A025465(n) - A025468(n). - Antti Karttunen, Aug 29 2017

A025396 Numbers that are the sum of 3 positive cubes in exactly 2 ways.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
Offset: 1

Views

Author

Keywords

Comments

Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013

Examples

			a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], ?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale, Jan 18 2012 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

A025399 Numbers that are the sum of 3 distinct positive cubes in exactly 1 way.

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025395 (not necessarily distinct), A024973.

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 && Length[#] == Length[Union[#]] &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

A024975 MINUS A024974. - R. J. Mathar, May 28 2008
{n: A025469(n) = 1}. - R. J. Mathar, Jun 15 2018

A180088 Primes which are the sum of three distinct positive cubes in two or more distinct ways.

Original entry on oeis.org

1009, 4229, 4447, 4733, 6301, 7561, 10657, 12377, 12979, 13103, 13859, 14561, 15569, 15667, 17207, 20663, 20747, 20899, 21673, 22511, 24137, 24499, 25999, 27793, 27917, 28001, 28493, 28729, 29917, 31123, 32579, 32833, 32957, 33119
Offset: 1

Views

Author

Keywords

Comments

1^3+2^3+10^3=1009=4^3+6^3+9^3

Crossrefs

Programs

  • Mathematica
    lst1=Sort@Select[Flatten[Table[a^3+b^3+c^3,{a,1,66},{b,a-1,1,-1},{c,b-1,1,-1}]],PrimeQ[ # ]&]; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst

A180089 Semiprimes which are the sum of three distinct positive cubes in two or more distinct ways.

Original entry on oeis.org

1366, 1457, 1793, 1945, 3599, 4105, 5435, 7379, 8315, 9017, 10261, 10963, 11773, 12706, 13957, 15163, 15371, 15553, 15751, 15758, 16271, 17263, 17354, 17947, 18649, 19027, 19369, 19657, 19729, 19774, 19781, 19907, 21026, 21167, 22411
Offset: 1

Views

Author

Keywords

Comments

2^3+3^3+11^3=5^3+8^3+9^3=1366=2*683, 1^3+5^3+11^3=6^3+8^3+9^3=1457=31*47,..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[Do[Do[If[f[p=a^3+b^3+c^3],AppendTo[lst,p]],{c,b-1,1,-1}],{b,a-1,1,-1}],{a,55}];lst1=Sort@lst; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst

A180099 Primes which are the sum of three distinct positive cubes of prime numbers in two or more distinct ways.

Original entry on oeis.org

185527, 451837, 591751, 1265471, 1266929, 1618973, 1626227, 1664713, 2586277, 2754683, 2765519, 2805193, 3422303, 3740309, 3748499, 4154779, 5336479, 5483953, 5557987, 6130151, 6586091, 7231013, 7361801, 7726571, 8205553
Offset: 1

Views

Author

Keywords

Examples

			185527 = 47^3+43^3+13^3=53^3+31^3+19^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[PrimeQ[p=Prime[a]^3+Prime[b]^3+Prime[c]^3],AppendTo[lst,p]],{c,b-1,1,-1}],{b,a-1,1,-1}],{a,88}];lst1=Sort@lst; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst
    Select[Tally[Select[Total/@Subsets[Prime[Range[50]]^3,{3}],PrimeQ]],#[[2]]> 1&] [[All,1]]//Sort (* Harvey P. Dale, Sep 26 2020 *)

A180106 Semiprimes which are the sum of three distinct positive cubes of semiprime numbers in two or more distinct ways.

Original entry on oeis.org

88073, 195905, 196057, 196841, 205102, 211466, 610903, 747209, 809966, 1078622, 1543267, 1828441, 1967402, 2143783, 2312029, 2803501, 3055258, 3108673, 3244466, 3477629, 3662567, 4237577, 4770137, 5741074, 5835593, 5908889, 7189265, 7497118, 8438249, 8742781
Offset: 1

Views

Author

Keywords

Comments

610903 = 74^3+55^3+34^3 = 82^3+39^3+6^3.
88073 = 29*3037 = 21^3+33^3+35^3 = 25^3+26^3+38^3. - Chai Wah Wu, May 20 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimeOmega@ n == 2; lst = {}; Do[Do[Do[If[And[f[a], f[b], f[c], f[p = a^3 + b^3 + c^3]], AppendTo[lst, p]], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 200}]; lst1 = Sort@ lst; lst = {}; Do[If[lst1[[n]] == lst1[[n + 1]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1] - 1}]; lst (* Corrected by Michael De Vlieger, May 21 2017 *)

Extensions

Terms corrected by Chai Wah Wu, May 20 2017

A219329 Numbers that can be expressed as the sum of three nonnegative cubes in three ways.

Original entry on oeis.org

5104, 5832, 9288, 9729, 10261, 10773, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24416, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 39528, 40060, 40097, 40832, 40851, 41033, 41040, 41364
Offset: 1

Views

Author

Keywords

Comments

Index of A051343 = 9, superset of index of A025456 = 3.
Subset of A001239.

Examples

			a(1) = 5104 = 1^3+12^3+15^3 = 2^3+10^3+16^3 = 9^3+10^3+15^3.
		

Crossrefs

Other sums of cubes: A025402, A025398, A024974, A001239, A008917.
Cf. A025396.

Programs

  • Mathematica
    Select[Range[42000],Length[PowersRepresentations[#,3,3]]==3&] (* Harvey P. Dale, Sep 28 2016 *)
Showing 1-8 of 8 results.