cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A025456 Number of partitions of n into 3 positive cubes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

If A025455(n) > 0 then a(n + k^3) > 0 for k>0; a(A119977(n))>0; a(A003072(n))>0. - Reinhard Zumkeller, Jun 03 2006
a(A057904(n))=0; a(A003072(n))>0; a(A025395(n))=1; a(A008917(n))>1; a(A025396(n))=2. - Reinhard Zumkeller, Apr 23 2009
The first term > 1 is a(251) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Least inverses are A025418.
Cf. A025455, A003108, A003072 (1 or more ways), A008917 (two or more ways), A025395-A025398.

Programs

  • Maple
    A025456 := proc(n)
        local a,x,y,zcu ;
        a := 0 ;
        for x from 1 do
            if 3*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                zcu := n-x^3-y^3 ;
                if isA000578(zcu) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := Count[ PowersRepresentations[n, 3, 3], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Oct 31 2012 *)
  • PARI
    a(n)=sum(a=sqrtnint(n\3,3),sqrtnint(n,3),sum(b=1,a,my(C=n-a^3-b^3,c);ispower(C,3,&c)&&0Charles R Greathouse IV, Jun 26 2013

Formula

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A008917 Numbers that are the sum of 3 positive cubes in more than one way.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447
Offset: 1

Views

Author

Keywords

Comments

Of course reordering the terms does not count.
A025456(a(n)) > 1. [Reinhard Zumkeller, Apr 23 2009]

Examples

			a(2) = 1009 = 1^3+2^3+10^3 = 4^3+6^3+9^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4450], 1 < Length @ Cases[PowersRepresentations[#, 3, 3], {?Positive, ?Positive, ?Positive}] &]  (* _Jean-François Alcover, Apr 04 2011 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
    n=3; while(n<5000, if(is(n)>1, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015

A025397 Numbers that are the sum of 3 positive cubes in exactly 3 ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687, 43408, 45144
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    Reps:= Matrix(N,3,(i,j) -> {}):
    for i from 1 to floor(N^(1/3)) do
      Reps[i^3,1]:= {[i]}
    od:
    for j from 2 to 3 do
    for i from 1 to floor(N^(1/3)) do
      for x from i^3+1 to N do
        Reps[x,j]:= Reps[x,j] union
          map(t -> if t[-1] <= i then [op(t),i] fi, Reps[x-i^3,j-1]);
      od
    od
    od:
    select(t -> nops(Reps[t,3])=3, [$1..N]); # Robert Israel, Aug 28 2015
  • Mathematica
    Reap[ For[ n = 1, n <= 50000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
    n=3; while(n<50000, if(is(n)==3, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015

Formula

n such that A025456(n) = 3. - Robert Israel, Aug 28 2015

A025395 Numbers that are the sum of 3 positive cubes in exactly 1 way.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434, 440
Offset: 1

Views

Author

Keywords

Comments

A025456(a(n)) = 1. - Reinhard Zumkeller, Apr 23 2009

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

A025404 Numbers that are the sum of 4 positive cubes in exactly 2 ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484, 1486
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 2}. - R. J. Mathar, Jun 15 2018

A344192 Numbers that are the sum of three fourth powers in exactly two ways.

Original entry on oeis.org

2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673, 364658, 384833, 439922, 457488
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A309762 at term 59 because 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4

Examples

			16562 is a member of this sequence because 16562 = 1^4 + 9^4 + 10^4 = 5^4 + 6^4 + 11^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A343708 Numbers that are the sum of two positive cubes in exactly two ways.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977, 805688, 842751, 885248, 886464
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A001235 at term 455 because 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3 = A011541(3). Thus, this term is not in this sequence but is in A001235.

Examples

			13832 is in this sequence because 13832 = 2^3 + 24^3 = 18^3 + 20^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@70000,Length@Select[PowersRepresentations[#,2,3],FreeQ[#,0]&]==2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,1000)]#n
    for pos in cwr(power_terms,2):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])#s
    for x in range(len(rets)):
        print(rets[x])

A001239 Numbers that are the sum of 3 nonnegative cubes in more than 1 way.

Original entry on oeis.org

216, 251, 344, 729, 855, 1009, 1072, 1366, 1457, 1459, 1520, 1674, 1728, 1729, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 2752, 3060, 3391, 3402, 3457, 3500, 3592, 3599, 3655, 3744, 3745
Offset: 1

Views

Author

Keywords

References

  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 165.

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], Length[PowersRepresentations[#, 3, 3]] > 1 &] (* Harvey P. Dale, Feb 03 2011 *)
  • PARI
    is(n)=my(t); for(a=0, sqrtnint(n, 3), my(a3=a^3, c); for(b=0, min(a, sqrtnint(n-a3, 3)), if(ispower(n-a3-b^3, 3, &c) && c <= b && t++>1, return(1)))); 0 \\ Charles R Greathouse IV, Jul 02 2017

A219329 Numbers that can be expressed as the sum of three nonnegative cubes in three ways.

Original entry on oeis.org

5104, 5832, 9288, 9729, 10261, 10773, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24416, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 39528, 40060, 40097, 40832, 40851, 41033, 41040, 41364
Offset: 1

Views

Author

Keywords

Comments

Index of A051343 = 9, superset of index of A025456 = 3.
Subset of A001239.

Examples

			a(1) = 5104 = 1^3+12^3+15^3 = 2^3+10^3+16^3 = 9^3+10^3+15^3.
		

Crossrefs

Other sums of cubes: A025402, A025398, A024974, A001239, A008917.
Cf. A025396.

Programs

  • Mathematica
    Select[Range[42000],Length[PowersRepresentations[#,3,3]]==3&] (* Harvey P. Dale, Sep 28 2016 *)
Showing 1-9 of 9 results.