cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A025396 Numbers that are the sum of 3 positive cubes in exactly 2 ways.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
Offset: 1

Views

Author

Keywords

Comments

Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013

Examples

			a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], ?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale, Jan 18 2012 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

A048927 Numbers that are the sum of 5 positive cubes in exactly 2 ways.

Original entry on oeis.org

157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 15416 terms, the last of which is 2243453. - Donovan Johnson, Jan 11 2013
From a(1) = 157 we see that c(n) = (number of ways n is the sum of 5 cubes) coincides with A010057 = characteristic function of cubes, up to n = 156. This sequence lists the numbers n for which c(n) = 2. See A003328 for c(n) > 0 and A048926 for c(n) = 1. - M. F. Hasler, Jan 04 2023

Crossrefs

Cf. A003328 (sums of 5 positive cubes), A025404, A048926 (sum of 5 positive cubes in exactly 1 way), A048930, A294736, A343702, A343705, A344237.

Programs

  • Mathematica
    Select[ Range[ 1000], (test = Length[ Select[ PowersRepresentations[#, 5, 3], And @@ (Positive /@ #)& ] ] == 2; If[test, Print[#]]; test)& ](* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    (waycount(n,numcubes,imax)={if(numcubes==0, !n, sum(i=1,imax, waycount(n-i^3,numcubes-1,i)))}); isA048927(n)=(waycount(n,5,floor(n^(1/3)))==2); \\ Michael B. Porter, Sep 27 2009
  • Python
    def ways (n, left = 5, last = 1):
      a = last; a3 = a**3; c = 0
      while a3 <= n-left+1:
        if left > 1:
           c += ways(n-a3, left-1, a)
        elif a3 == n:
           c += 1
        a += 1; a3 = a**3
      return c
    for n in range (1,1000): # to print this sequence
      if ways(n)==2: print(n,end=", ") # in Python2 use, e.g.: print n,
    # Minor edits by M. F. Hasler, Jan 04 2023
    

Extensions

More terms from Walter Hofmann (walterh(AT)gmx.de), Jun 01 2000

A025406 Numbers that are the sum of 4 positive cubes in 2 or more ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1225, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 2000: # for terms <= N
    S2:= {}: S1:= {}:
    for x from 1 while x^3 < N do
    for y from 1 to x while x^3 + y^3 < N do
      for z from 1 to y while x^3 + y^3 + z^3 < N do
        for w from 1 to z do
        v:= x^3 + y^3 + z^3 + w^3;
        if v > N then break fi;
        if member(v,S1) then S2:= S2 union {v}
        else S1:= S1 union {v}
        fi
    od od od od:
    sort(convert(S2,list)); # Robert Israel, Feb 24 2021

Formula

{n: A025457(n) >= 2}. - R. J. Mathar, Jun 15 2018

A344193 Numbers that are the sum of four fourth powers in exactly two ways.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699, 20658, 20739, 20979, 21154, 21219, 21329, 21363
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4

Examples

			2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A025403 Numbers that are the sum of 4 positive cubes in exactly 1 way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 224, 226, 233, 240, 243, 245, 254, 256, 261, 266, 271, 280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 300, n++, pr = Select[ PowersRepresentations[n, 4, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

{n: A025457(n) = 1}. - R. J. Mathar, Jun 15 2018

A025405 Numbers that are the sum of 4 positive cubes in exactly 3 ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3717, 3736, 3753, 3815, 3941
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 3}. - R. J. Mathar, Jun 15 2018
Showing 1-6 of 6 results.