cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003327 Numbers that are the sum of 4 positive cubes in 1 or more way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 219, 224, 226, 233, 240, 243, 245, 252, 254
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that every number greater than 7373170279850 is in this sequence. [See the paper of the same name. - T. D. Noe, May 25 2017] - Charles R Greathouse IV, Jan 14 2017
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3888 is in the sequence as 3888 = 6^3 + 6^3 + 12^3 + 12^3.
7729 is in the sequence as 7729 = 2^3 + 4^3 + 14^3 + 17^3.
7875 is in the sequence as 7875 = 5^3 + 10^3 + 15^3 + 15^3. (End)
		

Crossrefs

Cf. A025403, A057905 (complement), A025411 (distinct).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    list(lim)=my(v=List(),e=1+lim\1,x='x,t); t=sum(i=1,sqrtnint(e-4,3), x^i^3, O(x^e))^4; for(n=4,lim, if(polcoeff(t,n)>0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2017

Extensions

More terms from Eric W. Weisstein

A025457 Number of partitions of n into 4 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

The first term > 1 is a(219) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Cf. A003108, A025455, A025456, A025403-A025407, A003327, A025420 (greedy inverse).

Programs

  • Maple
    N:= 100;
    A:= Array(0..N);
    for a from 1 to floor(N^(1/3)) do
      for b from a to floor((N-a^3)^(1/3)) do
         for c from b to floor((N-a^3-b^3)^(1/3)) do
            for d from c to floor((N-a^3-b^3-c^3)^(1/3)) do
              n:= a^3 + b^3 + c^3 + d^3;
              A[n]:= A[n]+1;
    od od od od:
    seq(A[n],n=0..N); # Robert Israel, Aug 18 2014
    A025457 := proc(n)
        local a,x,y,z,ucu ;
        a := 0 ;
        for x from 1 do
            if 4*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+3*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+2*z^3 > n then
                        break;
                    end if;
                    ucu := n-x^3-y^3-z^3 ;
                    if isA000578(ucu) then
                        a := a+1 ;
                    end if;
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    r[n_] := Reduce[0 < a <= b <= c <= d && n == a^3+b^3+c^3+d^3, {a, b, c, d}, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
    Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Feb 26 2019 *)

Formula

a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A344189 Numbers that are the sum of four fourth powers in exactly one way.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218, 1252, 1267, 1282, 1299, 1314, 1329, 1332, 1344, 1347, 1379, 1393
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003338 at term 14 because 259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4

Examples

			34 is a member of this sequence because 34 = 1^4 + 1^4 + 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A025395 Numbers that are the sum of 3 positive cubes in exactly 1 way.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434, 440
Offset: 1

Views

Author

Keywords

Comments

A025456(a(n)) = 1. - Reinhard Zumkeller, Apr 23 2009

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

A025404 Numbers that are the sum of 4 positive cubes in exactly 2 ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484, 1486
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 2}. - R. J. Mathar, Jun 15 2018
Showing 1-5 of 5 results.