cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003338 Numbers that are the sum of 4 nonzero 4th powers.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
53667 is in the sequence as 53667 = 2^4 + 5^4 + 7^4 + 15^4.
81427 is in the sequence as 81427 = 5^4 + 5^4 + 11^4 + 16^4.
106307 is in the sequence as 106307 = 3^4 + 5^4 + 5^4 + 18^4. (End)
		

Crossrefs

Cf. A047715, A309763 (more than 1 way), A344189 (exactly 2 ways), A176197 (distinct nonzero powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<=b<=c<=d.
    A003338 := proc(n)
        local a,i,j,k,l,res ;
        a := 0 ;
        for i from 1 do
            if i^4 > n then
                break ;
            end if;
            for j from i do
                if i^4+j^4 > n then
                    break ;
                end if;
                for k from j do
                    if i^4+j^4+k^4> n then
                        break;
                    end if;
                    res := n-i^4-j^4-k^4 ;
                    if issqr(res) then
                        res := sqrt(res) ;
                        if issqr(res) then
                            l := sqrt(res) ;
                            if l >= k then
                                a := a+1 ;
                            end if;
                        end if;
                    end if;
                end do:
            end do:
        end do:
        a ;
    end proc:
    for n from 1 do
        if A003338(n) > 0 then
            print(n) ;
        end if;
    end do: # R. J. Mathar, May 17 2023
  • Mathematica
    f[maxno_]:=Module[{nn=Floor[Power[maxno-3, 1/4]],seq}, seq=Union[Total/@(Tuples[Range[nn],{4}]^4)]; Select[seq,#<=maxno&]]
    f[1000] (* Harvey P. Dale, Feb 27 2011 *)
  • Python
    limit = 1218
    from functools import lru_cache
    qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit]
    qds = set(qd)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in qds else set()
      return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1]) # Michael S. Branicky, Apr 19 2021

A344188 Numbers that are the sum of three fourth powers in exactly one way.

Original entry on oeis.org

3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177, 2403, 2418, 2433, 2483, 2498, 2546, 2563, 2593, 2608, 2658
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003337 and A047714 at term 60 because 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, see A309762.

Examples

			33 is a member of this sequence because 33 = 1^4 + 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A344193 Numbers that are the sum of four fourth powers in exactly two ways.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699, 20658, 20739, 20979, 21154, 21219, 21329, 21363
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4

Examples

			2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A344190 Numbers that are the sum of five fourth powers in exactly one way.

Original entry on oeis.org

5, 20, 35, 50, 65, 80, 85, 100, 115, 130, 145, 165, 180, 195, 210, 245, 290, 305, 320, 325, 355, 370, 385, 405, 420, 435, 450, 500, 530, 545, 560, 580, 595, 610, 625, 629, 644, 659, 674, 675, 689, 690, 709, 724, 739, 754, 755, 770, 785, 789, 800, 804, 819, 850, 865, 869, 899, 914, 929, 930, 949, 964, 979, 994, 1025, 1040
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003339 at term 17 because 260 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4

Examples

			35 is a member of this sequence because 35 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A344642 Numbers that are the sum of four fifth powers in exactly one way.

Original entry on oeis.org

4, 35, 66, 97, 128, 246, 277, 308, 339, 488, 519, 550, 730, 761, 972, 1027, 1058, 1089, 1120, 1269, 1300, 1331, 1511, 1542, 1753, 2050, 2081, 2112, 2292, 2323, 2534, 3073, 3104, 3128, 3159, 3190, 3221, 3315, 3370, 3401, 3432, 3612, 3643, 3854, 4096, 4151, 4182, 4213, 4393, 4424, 4635, 5174, 5205, 5416, 6197, 6252
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Comments

Differs from A003349 at term 270 because 51445 = 4^5 + 8^5 + 8^5 + 8^5 = 6^5 + 7^5 + 7^5 + 9^5

Examples

			66 is a term because 66 = 1^5 + 1^5 + 2^5 + 2^5
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A025403 Numbers that are the sum of 4 positive cubes in exactly 1 way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 224, 226, 233, 240, 243, 245, 254, 256, 261, 266, 271, 280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 300, n++, pr = Select[ PowersRepresentations[n, 4, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

{n: A025457(n) = 1}. - R. J. Mathar, Jun 15 2018

A047716 Sums of 5 but no fewer nonzero fourth powers.

Original entry on oeis.org

5, 20, 35, 50, 65, 80, 85, 100, 115, 130, 145, 165, 180, 195, 210, 245, 260, 275, 290, 305, 320, 325, 340, 355, 370, 385, 405, 420, 435, 450, 500, 515, 530, 545, 560, 580, 595, 610, 629, 644, 659, 675, 689, 690, 709, 724, 739, 754, 755, 770, 785, 789, 800
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Crossrefs

Subsequence of A003339.

Programs

  • PARI
    upto(n)={my(e=5); my(s=sum(k=1, sqrtint(sqrtint(n)), x^(k^4)) + O(x*x^n)); my(p=s^e, q=(1 + s)^(e-1)); select(k->polcoeff(p,k) && !polcoeff(q,k), [1..n])} \\ Andrew Howroyd, Jul 06 2018
    
  • Python
    from itertools import combinations_with_replacement as combs_with_rep
    def aupto(limit):
      qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 4 <= limit]
      ss = [set(sum(c) for c in combs_with_rep(qd, k)) for k in range(6)]
      return sorted(filter(lambda x: x <= limit, ss[5]-ss[4]-ss[3]-ss[2]-ss[1]))
    print(aupto(800)) # Michael S. Branicky, May 20 2021

Formula

Equals A003339 - A344189 - A344188 - A344187 - A000583. - Sean A. Irvine, May 15 2021
Showing 1-7 of 7 results.