cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003337 Numbers n which are the sum of 3 nonzero 4th powers.

Original entry on oeis.org

3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177
Offset: 1

Views

Author

Keywords

Comments

Numbers which are in this sequence but not in A047714 must also be the sum of 2 biquadrates, or equal to a fourth power. Among the first 1000 terms of this sequence, this is the case for 4802 = 2*7^4, 57122 = 2*13^4 and 76832 = 2*14^4. - M. F. Hasler, Dec 31 2012
The union of A047714, A336536, and fourth powers of A003294. - Robert Israel, Jul 24 2020
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
194818 is in the sequence as 194818 = 3^4 + 4^4 + 21^4.
480113 is in the sequence as 480113 = 7^4 + 12^4 + 26^4.
693842 is in the sequence as 693842 = 13^4 + 15^4 + 28^4. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Python
    def aupto(lim):
      p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
      p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
      p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim)
      return sorted(p3)
    print(aupto(2400)) # Michael S. Branicky, Mar 18 2021

A344189 Numbers that are the sum of four fourth powers in exactly one way.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218, 1252, 1267, 1282, 1299, 1314, 1329, 1332, 1344, 1347, 1379, 1393
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003338 at term 14 because 259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4

Examples

			34 is a member of this sequence because 34 = 1^4 + 1^4 + 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A025395 Numbers that are the sum of 3 positive cubes in exactly 1 way.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434, 440
Offset: 1

Views

Author

Keywords

Comments

A025456(a(n)) = 1. - Reinhard Zumkeller, Apr 23 2009

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

A344187 Numbers that are the sum of two positive fourth powers in exactly one way.

Original entry on oeis.org

2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8192, 8962, 10001, 10016, 10081, 10256, 10625, 10657, 11296, 12401, 13122, 14096, 14642
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003336 at term 11660 because 635318657 = 59^4 + 158^4 = 133^4 + 134^4

Examples

			32 is a member of this sequence because 32 = 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,2):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A344192 Numbers that are the sum of three fourth powers in exactly two ways.

Original entry on oeis.org

2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673, 364658, 384833, 439922, 457488
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A309762 at term 59 because 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4

Examples

			16562 is a member of this sequence because 16562 = 1^4 + 9^4 + 10^4 = 5^4 + 6^4 + 11^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A344641 Numbers that are the sum of three positive fifth powers in exactly one way.

Original entry on oeis.org

3, 34, 65, 96, 245, 276, 307, 487, 518, 729, 1026, 1057, 1088, 1268, 1299, 1510, 2049, 2080, 2291, 3072, 3127, 3158, 3189, 3369, 3400, 3611, 4150, 4181, 4392, 5173, 6251, 6282, 6493, 7274, 7778, 7809, 7840, 8020, 8051, 8262, 8801, 8832, 9043, 9375, 9824, 10902, 10933, 11144, 11925, 14026, 15553, 15584, 15795
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Comments

Differs from A003348 at term 44785 because 1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5. [Corrected by Patrick De Geest, Dec 27 2024]

Examples

			65 is a term because 65 = 1^5 + 2^5 + 2^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A047716 Sums of 5 but no fewer nonzero fourth powers.

Original entry on oeis.org

5, 20, 35, 50, 65, 80, 85, 100, 115, 130, 145, 165, 180, 195, 210, 245, 260, 275, 290, 305, 320, 325, 340, 355, 370, 385, 405, 420, 435, 450, 500, 515, 530, 545, 560, 580, 595, 610, 629, 644, 659, 675, 689, 690, 709, 724, 739, 754, 755, 770, 785, 789, 800
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Crossrefs

Subsequence of A003339.

Programs

  • PARI
    upto(n)={my(e=5); my(s=sum(k=1, sqrtint(sqrtint(n)), x^(k^4)) + O(x*x^n)); my(p=s^e, q=(1 + s)^(e-1)); select(k->polcoeff(p,k) && !polcoeff(q,k), [1..n])} \\ Andrew Howroyd, Jul 06 2018
    
  • Python
    from itertools import combinations_with_replacement as combs_with_rep
    def aupto(limit):
      qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 4 <= limit]
      ss = [set(sum(c) for c in combs_with_rep(qd, k)) for k in range(6)]
      return sorted(filter(lambda x: x <= limit, ss[5]-ss[4]-ss[3]-ss[2]-ss[1]))
    print(aupto(800)) # Michael S. Branicky, May 20 2021

Formula

Equals A003339 - A344189 - A344188 - A344187 - A000583. - Sean A. Irvine, May 15 2021

A047715 Numbers that are the sum of 4 but no fewer nonzero fourth powers.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Comments

First differs from A003338 at term 64: A003338(64) = 1393 is also a term of A003337, so not a term here. - Michael S. Branicky, Apr 19 2021

Crossrefs

Cf. A000583, A002377, A003338 (sum of 4), A003337 (sum of 3), A003336 (sum of 2), A344188, A344187.

Programs

  • Python
    limit = 1153
    from functools import lru_cache
    qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit]
    qds = set(qd)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n,)} if n in qds else set()
      return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1))
    A003338s = set(n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1)
    A003337s = set(n for n in range(3, limit+1) if len(findsums(n, 3)) >= 1)
    A003336s = set(n for n in range(2, limit+1) if len(findsums(n, 2)) >= 1)
    print(sorted(A003338s - A003337s - A003336s - qds)) # Michael S. Branicky, Apr 19 2021

Formula

Equals A003338 - A344188 - A344187 - A000583, where "-" denotes "set difference". - Sean A. Irvine, May 15 2021
Showing 1-8 of 8 results.