cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A025396 Numbers that are the sum of 3 positive cubes in exactly 2 ways.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
Offset: 1

Views

Author

Keywords

Comments

Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013

Examples

			a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], ?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale, Jan 18 2012 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

A309762 Numbers that are the sum of 3 nonzero 4th powers in more than one way.

Original entry on oeis.org

2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Examples

			2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, so 2673 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # for terms <= N
    V:= Vector(N,datatype=integer[4]):
    for a from 1 while a^4 <= N do
      for b from 1 to a while a^4+b^4 <= N do
        for c from 1 to b do
          v:= a^4+b^4+c^4;
          if v > N then break fi;
          V[v]:= V[v]+1
    od od od:
    select(i -> V[i]>1, [$1..N]); # Robert Israel, Aug 19 2019
  • Mathematica
    Select[Range@350000, Length@Select[PowersRepresentations[#, 3, 4], ! MemberQ[#, 0] &] > 1 &]

A344188 Numbers that are the sum of three fourth powers in exactly one way.

Original entry on oeis.org

3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177, 2403, 2418, 2433, 2483, 2498, 2546, 2563, 2593, 2608, 2658
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A003337 and A047714 at term 60 because 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, see A309762.

Examples

			33 is a member of this sequence because 33 = 1^4 + 2^4 + 2^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 1])
    for x in range(len(rets)):
        print(rets[x])

A344193 Numbers that are the sum of four fourth powers in exactly two ways.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699, 20658, 20739, 20979, 21154, 21219, 21329, 21363
Offset: 1

Views

Author

David Consiglio, Jr., May 11 2021

Keywords

Comments

Differs from A309763 at term 32 because 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4

Examples

			2689 is a member of this sequence because 2689 = 2^4 + 2^4 + 4^4 + 7^4 = 2^4 + 3^4 + 6^4 + 6^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A344240 Numbers that are the sum of three fourth powers in exactly three ways.

Original entry on oeis.org

811538, 1733522, 2798978, 3750578, 4614722, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 16196193, 17868242, 21556178, 22349522, 25190802, 25589858, 27736352, 29969282, 41532498, 44048498, 44783648, 45182018, 50944418, 54894242, 57052562, 59165442, 60009248
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344239 at term 6 because 5978882 = 3^4 + 40^4 + 43^4 = 8^4 + 37^4 + 45^4 = 15^4 + 32^4 + 47^4 = 23^4 + 25^4 + 48^4

Examples

			2798978 is a member of this sequence because 2798978 = 6^4 + 31^4 + 37^4 = 9^4 + 29^4 + 38^4 = 13^4 + 26^4 + 39^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 3])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.