cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003328 Numbers that are the sum of 5 positive cubes.

Original entry on oeis.org

5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 157, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195, 199
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
It seems only a finite number N of positive integers are not in this sequence, and thus a(n) = n - N for all sufficiently large n. Is it true that 2243453, last term of A048927, is sufficiently large in that sense? - M. F. Hasler, Jan 04 2023

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3084 is in the sequence as 3084 = 5^3 + 5^3 + 5^3 +  8^3 + 13^3.
4385 is in the sequence as 4385 = 4^3 + 4^3 + 9^3 + 11^3 + 13^3.
5426 is in the sequence as 5426 = 8^3 + 9^3 + 9^3 + 12^3 + 12^3. (End)
		

Crossrefs

Cf. A057906 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    select( {is_A003328(n,k=5,m=3,L=sqrtnint(abs(n-k+1),m))=if( n>k*L^m || nM. F. Hasler, Aug 02 2020
    A003328_upto(N,k=5,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m),'x^n^m,O('x^N))^k], polcoef(N,i)] \\ M. F. Hasler, Aug 02 2020
    
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as combs_w_rep
    def aupto(lim):
      s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5)))
      s2counts = Counter(s2)
      return sorted(k for k in s2counts)
    print(aupto(200)) # Michael S. Branicky, May 12 2021

A048930 Numbers that are the sum of 6 positive cubes in exactly 2 ways.

Original entry on oeis.org

158, 165, 184, 228, 235, 247, 256, 261, 268, 273, 275, 280, 282, 284, 287, 291, 294, 306, 310, 313, 317, 324, 331, 332, 343, 345, 347, 350, 352, 362, 371, 373, 376, 378, 380, 385, 387, 388, 392, 395, 399, 404, 406, 408, 418, 425, 430, 432, 436, 437, 441
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 1094 terms, the last of which is 21722. - Donovan Johnson, Jan 09 2013

Examples

			158 is in the sequence since 158 = 64+64+27+1+1+1 = 125+8+8+8+8+1
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 6, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 2, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    mx=10^6; ct=vector(mx); cb=vector(99); for(i=1, 99, cb[i]=i^3); for(i1=1, 99, s1=cb[i1]; for(i2=i1, 99, s2=s1+cb[i2]; if(s2+4*cb[i2]>mx, next(2)); for(i3=i2, 99, s3=s2+cb[i3]; if(s3+3*cb[i3]>mx, next(2)); for(i4=i3, 99, s4=s3+cb[i4]; if(s4+2*cb[i4]>mx, next(2)); for(i5=i4, 99, s5=s4+cb[i5]; if(s5+cb[i5]>mx, next(2)); for(i6=i5, 99, s6=s5+cb[i6]; if(s6>mx, next(2)); ct[s6]++)))))); n=0; for(i=6, mx, if(ct[i]==2, n++; write("b048930.txt", n " " i))) /* Donovan Johnson, Jan 09 2013 */

Extensions

Terms corrected by Donovan Johnson, Jan 09 2013

A048926 Numbers that are the sum of 5 positive cubes in exactly 1 way.

Original entry on oeis.org

5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 11062 terms, the last of which is 1685758. This means that all numbers greater than 1685758 can be written as the sum of five positive cubes in at least two ways. - T. D. Noe, Dec 13 2006

Crossrefs

Cf. A057906 (numbers not the sum of five positive cubes)

Programs

  • Mathematica
    Select[ Range[200], Count[ PowersRepresentations[#, 5, 3], r_ /; FreeQ[r, 0]] == 1 &] (* Jean-François Alcover, Oct 23 2012 *)
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as combs_with_rep
    def aupto(lim):
      s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_with_rep(s, 5)))
      s2counts = Counter(s2)
      return sorted(k for k in s2counts if s2counts[k] == 1)
    print(aupto(196)) # Michael S. Branicky, May 12 2021

A343705 Numbers that are the sum of five positive cubes in exactly three ways.

Original entry on oeis.org

766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1259, 1289, 1350, 1368, 1424, 1431, 1439, 1441, 1457, 1487, 1492, 1494, 1529, 1531, 1538, 1550, 1555, 1568, 1583, 1587, 1592, 1593, 1594, 1609, 1611, 1613, 1639, 1648, 1665, 1672, 1674, 1688, 1707, 1711
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A343704 at term 20 because 1252 = 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 10^3 = 3^3 + 3^3 + 7^3 + 7^3 + 8^3 = 3^3 + 4^3 + 6^3 + 6^3 + 9^3. Thus this term is in A343704 but not in this sequence.
Comment from D. S. McNeil, May 13 2021: (Start)
If we weaken positive cubes to nonnegative cubes, Deshouillers, Hennecart, and Landreau (2000) give numerical and heuristic evidence that all numbers past 7373170279850 are representable as the sum of 4 nonnegative cubes.
So if they are right, then eventually we can just take some N and represent each of (N-1^3, N-2^3, N-3^3, N-4^3) as the sum of four cubes and then take 1^3, 2^3, 3^3, or 4^3 as our fifth cube, giving at least four 5-cube representations for N.
So it is very likely that the set of numbers representable by the sum of 5 positive cubes in exactly three ways is finite. (End)
It is conjectured that the number of ways of writing N as a sum of 5 positive cubes grows like C(N)*N^(2/3), where C(N) depends on N but is bounded away from zero by an absolute constant (Vaughan, 1981; Vaughan and Wooley, 2002). So the number will exceed 3 as soon as N is large enough, and so it is very likely that this sequence is finite. However, at present this is an open question. - N. J. A. Sloane, May 15 2021 (based on correspondence with Robert Vaughan and Trevor Wooley).

Examples

			827 is a term of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
		

References

  • R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981.
  • R. C. Vaughan, Trevor Wooley (2002), Waring's Problem: A Survey. In Michael A. Bennet, Bruce C. Berndt, Nigel Boston, Harold G. Diamond, Adolf J. Hildebrand, Walter Philipp (eds.). Number Theory for the Millennium. III. Natick, MA: A. K. Peters, pp. 301-340.

Crossrefs

Equivalent sequences for 1 way: A048926; 2 ways: A048927; 1 or more ways: A003328; 3 or more ways: A343704.
Cf. A003327.

Programs

  • Mathematica
    Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]==3&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 3])#s
    for x in range(len(rets)):
        print(rets[x])

A344237 Numbers that are the sum of five fourth powers in exactly two ways.

Original entry on oeis.org

260, 275, 340, 515, 884, 1555, 2595, 2660, 2675, 2690, 2705, 2755, 2770, 2835, 2930, 2945, 3010, 3185, 3299, 3314, 3379, 3554, 3923, 3970, 3985, 4050, 4115, 4145, 4160, 4210, 4290, 4355, 4400, 4465, 4594, 4769, 4834, 5075, 5090, 5155, 5265, 5330, 5395, 5440, 5505, 5570, 5699, 6370, 6545, 6580, 6595, 6660, 6675
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344237 at term 31 because 4225 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4

Examples

			340 is a member of this sequence because 340 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A343702 Numbers that are the sum of five positive cubes in two or more ways.

Original entry on oeis.org

157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710, 712, 719, 729, 731, 738, 745, 752, 759, 764, 766, 771, 773, 778, 785
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A048927:
766 = 1^3 + 1^3 + 2^3 + 3^3 + 9^3
= 1^3 + 4^3 + 4^3 + 5^3 + 8^3
= 2^3 + 2^3 + 4^3 + 7^3 + 7^3.
So 766 is a term, but not a term of A048927.

Examples

			227 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3
    = 2^3 + 3^3 + 4^3 + 4^3 + 4^3
so 227 is a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@1000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>1&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 2])#s
    for x in range(len(rets)):
        print(rets[x])

A025404 Numbers that are the sum of 4 positive cubes in exactly 2 ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484, 1486
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 2}. - R. J. Mathar, Jun 15 2018

A025458 Number of partitions of n into 5 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

a(n) > 2 at n= 766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044,... - R. J. Mathar, Sep 15 2015
The first term > 1 is a(157) = 2. - Michel Marcus, Apr 25 2019

Crossrefs

Column 5 of A320841, which cross-references the equivalent sequences for other numbers of positive cubes.
Positions of values: A057906 (0), A003328 (nonzero), A048926 (1), A048927 (2), A343705 (3), A344035 (4).

Programs

  • Maple
    A025458 := proc(n)
        local a,x,y,z,u,vcu ;
        a := 0 ;
        for x from 1 do
            if 5*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+4*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+3*z^3 > n then
                        break;
                    end if;
                    for u from z do
                        if x^3+y^3+z^3+2*u^3 > n then
                            break;
                        end if;
                        vcu := n-x^3-y^3-z^3-u^3 ;
                        if isA000578(vcu) then
                            a := a+1 ;
                        end if;
                    end do:
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := IntegerPartitions[n, {5}, Range[n^(1/3) // Ceiling]^3] // Length;
    a /@ Range[0, 157] (* Jean-François Alcover, Jun 20 2020 *)

Formula

a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 25 2019
Showing 1-8 of 8 results.