cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A048927 Numbers that are the sum of 5 positive cubes in exactly 2 ways.

Original entry on oeis.org

157, 220, 227, 246, 253, 260, 267, 279, 283, 286, 305, 316, 323, 342, 344, 361, 368, 377, 379, 384, 403, 410, 435, 440, 442, 468, 475, 487, 494, 501, 523, 530, 531, 549, 562, 568, 586, 592, 594, 595, 599, 602, 621, 625, 640, 647, 657, 658, 683, 703, 710
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 15416 terms, the last of which is 2243453. - Donovan Johnson, Jan 11 2013
From a(1) = 157 we see that c(n) = (number of ways n is the sum of 5 cubes) coincides with A010057 = characteristic function of cubes, up to n = 156. This sequence lists the numbers n for which c(n) = 2. See A003328 for c(n) > 0 and A048926 for c(n) = 1. - M. F. Hasler, Jan 04 2023

Crossrefs

Cf. A003328 (sums of 5 positive cubes), A025404, A048926 (sum of 5 positive cubes in exactly 1 way), A048930, A294736, A343702, A343705, A344237.

Programs

  • Mathematica
    Select[ Range[ 1000], (test = Length[ Select[ PowersRepresentations[#, 5, 3], And @@ (Positive /@ #)& ] ] == 2; If[test, Print[#]]; test)& ](* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    (waycount(n,numcubes,imax)={if(numcubes==0, !n, sum(i=1,imax, waycount(n-i^3,numcubes-1,i)))}); isA048927(n)=(waycount(n,5,floor(n^(1/3)))==2); \\ Michael B. Porter, Sep 27 2009
  • Python
    def ways (n, left = 5, last = 1):
      a = last; a3 = a**3; c = 0
      while a3 <= n-left+1:
        if left > 1:
           c += ways(n-a3, left-1, a)
        elif a3 == n:
           c += 1
        a += 1; a3 = a**3
      return c
    for n in range (1,1000): # to print this sequence
      if ways(n)==2: print(n,end=", ") # in Python2 use, e.g.: print n,
    # Minor edits by M. F. Hasler, Jan 04 2023
    

Extensions

More terms from Walter Hofmann (walterh(AT)gmx.de), Jun 01 2000

A048931 Numbers that are the sum of 6 positive cubes in exactly 3 ways.

Original entry on oeis.org

221, 254, 369, 411, 443, 469, 495, 502, 576, 595, 600, 648, 658, 684, 704, 711, 720, 739, 746, 753, 760, 765, 767, 772, 774, 779, 786, 793, 811, 818, 828, 835, 844, 854, 863, 866, 874, 880, 884, 886, 892, 893, 899, 905, 910, 919, 928, 929, 935, 936, 937
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 1141 terms, the last of which is 26132. - Donovan Johnson, Jan 09 2013

Examples

			221 is in the sequence since 221 = 216+1+1+1+1+1 = 125+64+8+8+8+8 = 64+64+64+27+1+1.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, pr = Select[ PowersRepresentations[n, 6, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    mx=10^6; ct=vector(mx); cb=vector(99); for(i=1, 99, cb[i]=i^3); for(i1=1, 99, s1=cb[i1]; for(i2=i1, 99, s2=s1+cb[i2]; if(s2+4*cb[i2]>mx, next(2)); for(i3=i2, 99, s3=s2+cb[i3]; if(s3+3*cb[i3]>mx, next(2)); for(i4=i3, 99, s4=s3+cb[i4]; if(s4+2*cb[i4]>mx, next(2)); for(i5=i4, 99, s5=s4+cb[i5]; if(s5+cb[i5]>mx, next(2)); for(i6=i5, 99, s6=s5+cb[i6]; if(s6>mx, next(2)); ct[s6]++)))))); n=0; for(i=6, mx, if(ct[i]==3, n++; write("b048931.txt", n " " i))) /* Donovan Johnson, Jan 09 2013 */

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Oct 02 2000

A343704 Numbers that are the sum of five positive cubes in three or more ways.

Original entry on oeis.org

766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1252, 1259, 1289, 1350, 1368, 1376, 1424, 1431, 1439, 1441, 1457, 1461, 1487, 1492, 1494, 1522, 1529, 1531, 1538, 1548, 1550, 1555, 1568, 1583, 1585, 1587, 1590, 1592, 1593, 1594, 1609, 1611, 1613, 1639
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A343705 at term 20 because 1252 = 1^3+1^3+5^3+5^3+10^3= 1^3+2^3+3^3+6^3+10^3 = 3^3+3^3+7^3+7^3+8^3 = 3^3+4^3+6^3+6^3+9^3. Thus this term is in this sequence but not A343705.

Examples

			827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])#s
    for x in range(len(rets)):
        print(rets[x])

A344244 Numbers that are the sum of five fourth powers in exactly three ways.

Original entry on oeis.org

4225, 6610, 6850, 9170, 9235, 9490, 11299, 12929, 14209, 14690, 14755, 14770, 15314, 16579, 16594, 16659, 16834, 17203, 17235, 17315, 17859, 17874, 17939, 18785, 18850, 18979, 19154, 19700, 19715, 20674, 21250, 21330, 21364, 21410, 21954, 23139, 23795, 24754, 25810, 26578, 28610, 28930, 29330, 29699
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344243 at term 31 because 20995 = 1^4 + 1^4 + 1^4 + 4^4 + 12^4 = 2^4 + 3^4 + 3^4 + 3^4 + 12^4 = 2^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 6^4 + 7^4 + 7^4 + 11^4

Examples

			6850 is a member of this sequence because 6850 =  = 1^4 + 2^4 + 2^4 + 4^4 + 9^4 = 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 3^4 + 3^4 + 6^4 + 6^4 + 8^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 3])
    for x in range(len(rets)):
        print(rets[x])

A344035 Numbers that are the sum of five positive cubes in exactly four ways.

Original entry on oeis.org

1252, 1376, 1461, 1522, 1548, 1585, 1590, 1646, 1702, 1709, 1737, 1739, 1772, 1798, 1802, 1810, 1864, 1889, 1954, 1987, 2006, 2033, 2081, 2096, 2152, 2160, 2225, 2241, 2251, 2276, 2313, 2322, 2339, 2341, 2367, 2374, 2377, 2416, 2423, 2456, 2458, 2465, 2467, 2512, 2521, 2528, 2530, 2537, 2540, 2549, 2556, 2582
Offset: 1

Views

Author

David Consiglio, Jr., May 07 2021

Keywords

Comments

Differs from A344034 at term 13 because 1765 = 1^3 + 1^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 9^3 + 10^3 = 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 8^3 + 10^3

Examples

			1461 is a member of this sequence because 1461 = 1^3 + 1^3 + 1^3 + 9^3 + 9^3 = 1^3 + 1^3 + 4^3 + 4^3 + 11^3 = 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 6^3 + 6^3 + 7^3 + 7^3 + 7^3
		

Crossrefs

Programs

  • Mathematica
    s5pcQ[n_]:=Length[Select[PowersRepresentations[n,5,3],FreeQ[#,0]&]]==4; Select[Range[ 3000],s5pcQ] (* Harvey P. Dale, Sep 15 2024 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])

A025405 Numbers that are the sum of 4 positive cubes in exactly 3 ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3717, 3736, 3753, 3815, 3941
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 3}. - R. J. Mathar, Jun 15 2018

A025458 Number of partitions of n into 5 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

a(n) > 2 at n= 766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044,... - R. J. Mathar, Sep 15 2015
The first term > 1 is a(157) = 2. - Michel Marcus, Apr 25 2019

Crossrefs

Column 5 of A320841, which cross-references the equivalent sequences for other numbers of positive cubes.
Positions of values: A057906 (0), A003328 (nonzero), A048926 (1), A048927 (2), A343705 (3), A344035 (4).

Programs

  • Maple
    A025458 := proc(n)
        local a,x,y,z,u,vcu ;
        a := 0 ;
        for x from 1 do
            if 5*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+4*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+3*z^3 > n then
                        break;
                    end if;
                    for u from z do
                        if x^3+y^3+z^3+2*u^3 > n then
                            break;
                        end if;
                        vcu := n-x^3-y^3-z^3-u^3 ;
                        if isA000578(vcu) then
                            a := a+1 ;
                        end if;
                    end do:
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := IntegerPartitions[n, {5}, Range[n^(1/3) // Ceiling]^3] // Length;
    a /@ Range[0, 157] (* Jean-François Alcover, Jun 20 2020 *)

Formula

a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 25 2019
Showing 1-7 of 7 results.