cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A024796 Numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k.

Original entry on oeis.org

27, 33, 38, 41, 51, 54, 57, 59, 62, 66, 69, 74, 75, 77, 81, 83, 86, 89, 90, 94, 98, 99, 101, 102, 105, 107, 108, 110, 113, 114, 117, 118, 121, 122, 123, 125, 126, 129, 131, 132, 134, 137, 138, 139, 141, 146, 147, 149, 150, 152, 153, 154, 155, 158, 161, 162, 164, 165, 166, 170
Offset: 1

Views

Author

Keywords

Comments

a(n) multiplied by (h^2)/(8*m*a^2) is the n-th energy level exhibiting accidental degeneracy, for a quantum mechanical particle of mass m in a cubic box of side length a (h is Planck's constant). - A. Timothy Royappa, Feb 12 2019

Crossrefs

Programs

  • Mathematica
    okQ[n_]:= Length[Select[PowersRepresentations[n, 3, 2], !MemberQ[#, 0] &]] > 1; (* Jinyuan Wang, Feb 12 2019 *)
  • PARI
    is(n)=if(n<27, return(0)); if(n%4==0, return(is(n/4))); my(w); for(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); for(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), if(issquare(t-j^2), w++>1 && return(1)))); 0 \\ Charles R Greathouse IV, Aug 05 2024

Formula

{n: A025427(n) > 1 }. - R. J. Mathar, Aug 05 2022

A025456 Number of partitions of n into 3 positive cubes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

If A025455(n) > 0 then a(n + k^3) > 0 for k>0; a(A119977(n))>0; a(A003072(n))>0. - Reinhard Zumkeller, Jun 03 2006
a(A057904(n))=0; a(A003072(n))>0; a(A025395(n))=1; a(A008917(n))>1; a(A025396(n))=2. - Reinhard Zumkeller, Apr 23 2009
The first term > 1 is a(251) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Least inverses are A025418.
Cf. A025455, A003108, A003072 (1 or more ways), A008917 (two or more ways), A025395-A025398.

Programs

  • Maple
    A025456 := proc(n)
        local a,x,y,zcu ;
        a := 0 ;
        for x from 1 do
            if 3*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                zcu := n-x^3-y^3 ;
                if isA000578(zcu) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := Count[ PowersRepresentations[n, 3, 3], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Oct 31 2012 *)
  • PARI
    a(n)=sum(a=sqrtnint(n\3,3),sqrtnint(n,3),sum(b=1,a,my(C=n-a^3-b^3,c);ispower(C,3,&c)&&0Charles R Greathouse IV, Jun 26 2013

Formula

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A025398 Numbers that are the sum of 3 positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 13896, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687
Offset: 1

Views

Author

Keywords

Examples

			a(1) = A230477(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3. - _Jonathan Sondow_, Oct 24 2013
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 50000], 2 < Length @ Cases[ PowersRepresentations[#, 3, 3], {?Positive, ?Positive, A008917%20by%20_Jonathan%20Sondow">?Positive}] &] (* adapted from Alcover's program for A008917 by _Jonathan Sondow, Oct 24 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<50000,if(is(n)>=3,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

Formula

A008917(n) < a(n) <= A025397(n). - Jonathan Sondow, Oct 24 2013
{n: A025456(n) >= 3}. - R. J. Mathar, Jun 15 2018

A025396 Numbers that are the sum of 3 positive cubes in exactly 2 ways.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
Offset: 1

Views

Author

Keywords

Comments

Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013

Examples

			a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], ?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale, Jan 18 2012 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

A309762 Numbers that are the sum of 3 nonzero 4th powers in more than one way.

Original entry on oeis.org

2673, 6578, 16562, 28593, 35378, 42768, 43218, 54977, 94178, 105248, 106353, 122018, 134162, 137633, 149058, 171138, 177042, 178737, 181202, 195122, 195858, 198497, 216513, 234273, 235298, 235553, 264113, 264992, 300833, 318402, 318882, 324818, 334802, 346673
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Examples

			2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, so 2673 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # for terms <= N
    V:= Vector(N,datatype=integer[4]):
    for a from 1 while a^4 <= N do
      for b from 1 to a while a^4+b^4 <= N do
        for c from 1 to b do
          v:= a^4+b^4+c^4;
          if v > N then break fi;
          V[v]:= V[v]+1
    od od od:
    select(i -> V[i]>1, [$1..N]); # Robert Israel, Aug 19 2019
  • Mathematica
    Select[Range@350000, Length@Select[PowersRepresentations[#, 3, 4], ! MemberQ[#, 0] &] > 1 &]

A024974 Numbers that are the sum of 3 distinct positive cubes in 2 or more ways.

Original entry on oeis.org

1009, 1366, 1457, 1520, 1737, 1756, 1793, 1854, 1945, 2072, 2241, 2456, 2736, 3060, 3592, 3599, 3745, 3926, 4105, 4131, 4168, 4229, 4320, 4376, 4437, 4447, 4473, 4616, 4733, 4922, 5104, 5130, 5435, 5472, 5643, 5706, 5825, 5832, 6183, 6301, 6642, 6848
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1009 = 1^3+2^3+10^3 = 4^3+6^3+9^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Cf. A025400 (exactly 2 ways), A008917 (not necessarily distinct)

Formula

{n: A025469(n) >= 2}. - R. J. Mathar, Jun 15 2018

A025397 Numbers that are the sum of 3 positive cubes in exactly 3 ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687, 43408, 45144
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    Reps:= Matrix(N,3,(i,j) -> {}):
    for i from 1 to floor(N^(1/3)) do
      Reps[i^3,1]:= {[i]}
    od:
    for j from 2 to 3 do
    for i from 1 to floor(N^(1/3)) do
      for x from i^3+1 to N do
        Reps[x,j]:= Reps[x,j] union
          map(t -> if t[-1] <= i then [op(t),i] fi, Reps[x-i^3,j-1]);
      od
    od
    od:
    select(t -> nops(Reps[t,3])=3, [$1..N]); # Robert Israel, Aug 28 2015
  • Mathematica
    Reap[ For[ n = 1, n <= 50000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
    n=3; while(n<50000, if(is(n)==3, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015

Formula

n such that A025456(n) = 3. - Robert Israel, Aug 28 2015

A025406 Numbers that are the sum of 4 positive cubes in 2 or more ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1225, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 2000: # for terms <= N
    S2:= {}: S1:= {}:
    for x from 1 while x^3 < N do
    for y from 1 to x while x^3 + y^3 < N do
      for z from 1 to y while x^3 + y^3 + z^3 < N do
        for w from 1 to z do
        v:= x^3 + y^3 + z^3 + w^3;
        if v > N then break fi;
        if member(v,S1) then S2:= S2 union {v}
        else S1:= S1 union {v}
        fi
    od od od od:
    sort(convert(S2,list)); # Robert Israel, Feb 24 2021

Formula

{n: A025457(n) >= 2}. - R. J. Mathar, Jun 15 2018

A001239 Numbers that are the sum of 3 nonnegative cubes in more than 1 way.

Original entry on oeis.org

216, 251, 344, 729, 855, 1009, 1072, 1366, 1457, 1459, 1520, 1674, 1728, 1729, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 2752, 3060, 3391, 3402, 3457, 3500, 3592, 3599, 3655, 3744, 3745
Offset: 1

Views

Author

Keywords

References

  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 165.

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], Length[PowersRepresentations[#, 3, 3]] > 1 &] (* Harvey P. Dale, Feb 03 2011 *)
  • PARI
    is(n)=my(t); for(a=0, sqrtnint(n, 3), my(a3=a^3, c); for(b=0, min(a, sqrtnint(n-a3, 3)), if(ispower(n-a3-b^3, 3, &c) && c <= b && t++>1, return(1)))); 0 \\ Charles R Greathouse IV, Jul 02 2017
Showing 1-10 of 13 results. Next