cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A025331 Numbers that are the sum of 3 nonzero squares in 3 or more ways.

Original entry on oeis.org

54, 66, 81, 86, 89, 99, 101, 110, 114, 126, 129, 131, 134, 146, 149, 150, 153, 161, 162, 166, 171, 173, 174, 179, 182, 185, 186, 189, 194, 198, 201, 206, 209, 216, 219, 221, 222, 225, 227, 230, 233, 234, 237, 241, 242, 243, 245, 246, 249, 251, 254, 257, 258, 261, 264
Offset: 1

Views

Author

Keywords

Crossrefs

A025456 Number of partitions of n into 3 positive cubes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

If A025455(n) > 0 then a(n + k^3) > 0 for k>0; a(A119977(n))>0; a(A003072(n))>0. - Reinhard Zumkeller, Jun 03 2006
a(A057904(n))=0; a(A003072(n))>0; a(A025395(n))=1; a(A008917(n))>1; a(A025396(n))=2. - Reinhard Zumkeller, Apr 23 2009
The first term > 1 is a(251) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Least inverses are A025418.
Cf. A025455, A003108, A003072 (1 or more ways), A008917 (two or more ways), A025395-A025398.

Programs

  • Maple
    A025456 := proc(n)
        local a,x,y,zcu ;
        a := 0 ;
        for x from 1 do
            if 3*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                zcu := n-x^3-y^3 ;
                if isA000578(zcu) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := Count[ PowersRepresentations[n, 3, 3], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Oct 31 2012 *)
  • PARI
    a(n)=sum(a=sqrtnint(n\3,3),sqrtnint(n,3),sum(b=1,a,my(C=n-a^3-b^3,c);ispower(C,3,&c)&&0Charles R Greathouse IV, Jun 26 2013

Formula

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A008917 Numbers that are the sum of 3 positive cubes in more than one way.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447
Offset: 1

Views

Author

Keywords

Comments

Of course reordering the terms does not count.
A025456(a(n)) > 1. [Reinhard Zumkeller, Apr 23 2009]

Examples

			a(2) = 1009 = 1^3+2^3+10^3 = 4^3+6^3+9^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4450], 1 < Length @ Cases[PowersRepresentations[#, 3, 3], {?Positive, ?Positive, ?Positive}] &]  (* _Jean-François Alcover, Apr 04 2011 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
    n=3; while(n<5000, if(is(n)>1, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015

A025397 Numbers that are the sum of 3 positive cubes in exactly 3 ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687, 43408, 45144
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    Reps:= Matrix(N,3,(i,j) -> {}):
    for i from 1 to floor(N^(1/3)) do
      Reps[i^3,1]:= {[i]}
    od:
    for j from 2 to 3 do
    for i from 1 to floor(N^(1/3)) do
      for x from i^3+1 to N do
        Reps[x,j]:= Reps[x,j] union
          map(t -> if t[-1] <= i then [op(t),i] fi, Reps[x-i^3,j-1]);
      od
    od
    od:
    select(t -> nops(Reps[t,3])=3, [$1..N]); # Robert Israel, Aug 28 2015
  • Mathematica
    Reap[ For[ n = 1, n <= 50000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
    n=3; while(n<50000, if(is(n)==3, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015

Formula

n such that A025456(n) = 3. - Robert Israel, Aug 28 2015

A343968 Numbers that are the sum of three positive cubes in four or more ways.

Original entry on oeis.org

13896, 40041, 44946, 52200, 53136, 58995, 76168, 82278, 93339, 94184, 105552, 110683, 111168, 112384, 112832, 113400, 143424, 149416, 149904, 161568, 167616, 169560, 171296, 175104, 196776, 197569, 208144, 216126, 221696, 222984, 224505, 235808, 240813, 252062, 255312, 262683, 262781, 266031
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			44946 =  7^3 + 12^3 + 35^3
      =  9^3 + 17^3 + 34^3
      = 11^3 + 24^3 + 31^3
      = 16^3 + 17^3 + 33^3
so 44946 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A025407 Numbers that are the sum of 4 positive cubes in 3 or more ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 1979, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2737, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3663, 3717, 3736
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) >= 3}. - R. J. Mathar, Jun 15 2018

A018787 Numbers that are the sum of two positive cubes in at least three ways (all solutions).

Original entry on oeis.org

87539319, 119824488, 143604279, 175959000, 327763000, 700314552, 804360375, 958595904, 1148834232, 1407672000, 1840667192, 1915865217, 2363561613, 2622104000, 3080802816, 3235261176, 3499524728, 3623721192, 3877315533, 4750893000, 5544709352, 5602516416
Offset: 1

Views

Author

David W. Wilson, Aug 15 1996

Keywords

References

  • J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Programs

  • Mathematica
    a=Sort[Flatten@Table[n^3+m^3,{m,2000},{n,m-1,1,-1}]];f3[l_]:=Module[{t={}},Do[If[l[[n]]==l[[n+2]],AppendTo[t,l[[n]]]],{n,1,Length[l]-2}];t];f3[a] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)

A230477 Smallest number that is the sum of n positive n-th powers in >= n ways.

Original entry on oeis.org

1, 50, 5104, 236674, 9006349824, 82188309244
Offset: 1

Views

Author

Jonathan Sondow, Oct 22 2013

Keywords

Comments

Does a(6) exist? For which values of n does a(n) exist? Is there a proof that a(n) < a(n+1) when both exist?

Examples

			1 = 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4.
9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5.
82188309244 = 1^6 + 9^6 + 29^6 + 44^6 + 55^6 + 60^6 = 2^6 + 12^6 + 25^6 + 51^6 + 53^6 + 59^6 = 5^6 + 23^6 + 27^6 + 44^6 + 51^6 + 62^6 = 10^6 + 16^6 + 41^6 + 45^6 + 51^6 + 61^6 = 12^6 + 23^6 + 33^6 + 34^6 + 55^6 + 61^6 = 15^6 + 23^6 + 31^6 + 36^6 + 53^6 + 62^6.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover, NY, 1966, pp. 162-165, 290-291.
  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

a(2) = A048610(2), a(3) = A025398(1), a(4) = A219921(1).
Cf. A146756 (smallest number that is the sum of n distinct positive n-th powers in exactly n ways), A230561 (smallest number that is the sum of two positive n-th powers in >= n ways), A091414 (smallest number that is the sum of n positive n-th powers in >= 2 ways).

Formula

a(n) <= A146756(n), with equality at least for n = 1, 3, 5 and inequality at least for n = 2, 4.
a(n) >= A091414(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5.

Extensions

a(5) from Donovan Johnson, Oct 23 2013
a(6) from Michael S. Branicky, May 09 2021

A344239 Numbers that are the sum of three fourth powers in three or more ways.

Original entry on oeis.org

811538, 1733522, 2798978, 3750578, 4614722, 5978882, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 15916082, 16196193, 17868242, 20621042, 21556178, 22349522, 22673378, 25190802, 25589858, 27736352, 29969282, 30623138, 33998258, 39765362, 41532498, 44048498
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			2798978 =  6^4 + 31^4 + 37^4
        =  9^4 + 29^4 + 38^4
        = 13^4 + 26^4 + 39^4
so 2798978 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A025402 Numbers that are the sum of 3 distinct positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12384, 13896, 14175, 17604, 17928, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 42056, 43408, 44946, 45144, 46593, 46684
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025398.

Formula

{n: A025469(n) >= 3}. - R. J. Mathar, Jun 15 2018
Showing 1-10 of 12 results. Next