cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A025398 Numbers that are the sum of 3 positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 13896, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687
Offset: 1

Views

Author

Keywords

Examples

			a(1) = A230477(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3. - _Jonathan Sondow_, Oct 24 2013
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 50000], 2 < Length @ Cases[ PowersRepresentations[#, 3, 3], {?Positive, ?Positive, A008917%20by%20_Jonathan%20Sondow">?Positive}] &] (* adapted from Alcover's program for A008917 by _Jonathan Sondow, Oct 24 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<50000,if(is(n)>=3,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

Formula

A008917(n) < a(n) <= A025397(n). - Jonathan Sondow, Oct 24 2013
{n: A025456(n) >= 3}. - R. J. Mathar, Jun 15 2018

A003825 Numbers that are the sum of two positive cubes in at least three ways (primitive solutions).

Original entry on oeis.org

87539319, 119824488, 143604279, 175959000, 327763000, 804360375, 1840667192, 1915865217, 3080802816, 3499524728, 3623721192, 5544709352, 10458523413, 10499580728, 10833628897, 15170835645, 18778674824, 21303180171, 21989186856
Offset: 1

Views

Author

Keywords

Comments

Here n = a^3 + b^3 = c^3 + d^3 = e^3 + f^3 where gcd(a, b, c, d, e, f) = 1.

References

  • J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Cf. A018787 (all solutions).

Extensions

More terms from David W. Wilson, Aug 15 1996

A023051 Numbers that are the sum of two positive cubes in at least four ways (all solutions).

Original entry on oeis.org

6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
Offset: 1

Views

Author

David W. Wilson (revised Oct 15 1997)

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Extensions

b-file extended by Ray Chandler, Jan 19 2009

A344804 Numbers that are the sum of two cubes in exactly three ways.

Original entry on oeis.org

87539319, 119824488, 143604279, 175959000, 327763000, 700314552, 804360375, 958595904, 1148834232, 1407672000, 1840667192, 1915865217, 2363561613, 2622104000, 3080802816, 3235261176, 3499524728, 3623721192, 3877315533, 4750893000, 5544709352, 5602516416
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2021

Keywords

Examples

			87539319 is a term because 87539319 = 167^3 + 436^3 = 22^3 + 423^3 = 255^3 + 414^3 (3 representations).
6963472309248 is not a term because 6963472309248 = 2421^3 + 19083^3 = 5436^3 + 18948^3 = 10200^3 + 18072^3 = 13322^3 + 16630^3 (4 representations).  This is the first difference between this sequence and A018787.
		

Crossrefs

Showing 1-5 of 5 results.