cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A023051 Numbers that are the sum of two positive cubes in at least four ways (all solutions).

Original entry on oeis.org

6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
Offset: 1

Views

Author

David W. Wilson (revised Oct 15 1997)

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Extensions

b-file extended by Ray Chandler, Jan 19 2009

A047696 Smallest positive number that can be written in n ways as a sum of two (not necessarily positive) cubes.

Original entry on oeis.org

1, 91, 728, 2741256, 6017193, 1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000
Offset: 1

Views

Author

Keywords

Comments

Sometimes called cab-taxi (or cabtaxi) numbers.
For a(10), see the C. Boyer link.
Christian Boyer: After his recent work on Taxicab(6) confirming the number found as an upper bound by Randall Rathbun in 2002, Uwe Hollerbach (USA) confirmed this week that my upper bound constructed in Dec 2006 is really Cabtaxi(10). See his announcement. - Jonathan Vos Post, Jul 08 2008
From PoChi Su, Aug 14 2014: (Start)
An upper bound of a(42) was given by C. Boyer (see the C. Boyer link), denoted by
BCa(42)= 2^9*3^9*5^9*7^7*11^3*13^6*17^3*19^3*29^3*31*37^4*43^4*
61^3*67^3*73*79^3*97^3*101^3*109^3*139^3*157*163^3*181^3*
193^3*223^3*229^3*307^3*397^3*457^3.
We show that 503^3*BCa(42) is an upper bound of a(43) with an additional sum of x^3+y^3, with
x=2^4*3^3*5^5*7*11*13^2*17*29*37*43*61*67*79*97*101*109*139*163*
181*193*223*229*307*397*457*2110099,
y=2^3*3^4*5^3*7*11*13^2*17*29*37*41*43*61*67*79*97*101*109*139*163*
181*193*223*229*307*397*457*176899.
(End)
From PoChi Su, Aug 29 2014: (Start)
An upper bound of a(43) was given by PoChi Su, denoted by
SCa(43)= 2^9*3^9*5^9*7^7*11^3*13^6*17^3*19^3*29^3*31*37^4*43^4*
61^3*67^3*73*79^3*97^3*101^3*109^3*139^3*157*163^3*181^3*
193^3*223^3*229^3*307^3*397^3*457^3*503^3.
We show that 1307^3*SCa(43) is an upper bound of a(44) with an additional sum of x^3+y^3, with
x=2^3*3^4*5^3*7^2*11*13^2*17*19*23*29*37*43*61*79*101*109*139*163*
181*193*223*229*307*353*397*457*503*826583,
y=-2^7*3^3*5^3*7^2*11*13^2*17*19^2*29*37*43*61*79*101*109*139*163*
181*193*223*229*307*397*457*503*58882897.
(End)
From Sergey Pavlov, Feb 18 2017: (Start)
For 1 < n <= 10, each a(n) can be written as the product of not more than n distinct prime powers where one of the factors is a power of 7. For 1 < n <= 9, a(n) can be represented as the difference between two squares, b(n)^2 - c(n)^2, where b(n), c(n) are integers, b(n+1) > b(n), and c(n+1) > c(n):
a(2) = 7 * 13 = 10^2 - 3^2 = 91,
a(3) = 2^3 * 7 * 13 = 33^2 - 19^2,
a(4) = 2^3 * 3^3 * 7^3 * 37 = 1659^2 - 105^2,
a(5) = 3^3 * 7 * 13 * 31 * 79 = 2477^2 - 344^2,
a(6) = 3^3 * 7^4 * 19 * 31 * 37 = 37590^2 - 483^2,
a(7) = 2^3 * 3^3 * 7^4 * 19 * 31 * 37 = 106477^2 - 5929^2,
a(8) = 2^3 * 3^3 * 7^4 * 19 * 23^3 * 31 * 37 = 11736739^2 - 487025^2,
a(9) = 2^3 * 3^3 * 5^3 * 7^4 * 19 * 31 * 37 * 67^3 = 651858879^2 - 3099621^2,
a(10) = 2^3 * 3^3 * 5^3 * 7^4 * 13^3 * 19 * 31 * 37 * 67^3.
(End)

Examples

			91 = 6^3 - 5^3 = 4^3 + 3^3 (in two ways).
Cabtaxi(9)=424910390480793000 = 645210^3 + 538680^3 = 649565^3 + 532315^3 = 752409^3 - 101409^3 = 759780^3 - 239190^3 = 773850^3 - 337680^3 = 834820^3 - 539350^3 = 1417050^3 - 1342680^3 = 3179820^3 - 3165750^3 = 5960010^3 - 5956020^3.
		

References

  • C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.

Crossrefs

Extensions

a(9) (which was found on Jan 31 2005) from Duncan Moore (Duncan.Moore(AT)nnc.co.uk), Feb 01 2005

A051167 Sum of two positive cubes in at least five ways (all solutions).

Original entry on oeis.org

48988659276962496, 391909274215699968, 490593422681271000, 1322693800477987392, 3135274193725599744, 3924747381450168000, 6123582409620312000, 6355491080314102272, 10581550403823899136
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Extended by Ray Chandler, Jan 19 2009

A003826 Numbers that are the sum of two cubes in at least four ways (primitive solutions).

Original entry on oeis.org

6963472309248, 12625136269928, 21131226514944, 26059452841000, 74213505639000, 95773976104625, 159380205560856, 174396242861568, 300656502205416, 376890885439488, 521932420691227, 573880096718136
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Extensions

More terms from David W. Wilson, Oct 15 1997
b-file extended by Ray Chandler, Jan 19 2009

A018787 Numbers that are the sum of two positive cubes in at least three ways (all solutions).

Original entry on oeis.org

87539319, 119824488, 143604279, 175959000, 327763000, 700314552, 804360375, 958595904, 1148834232, 1407672000, 1840667192, 1915865217, 2363561613, 2622104000, 3080802816, 3235261176, 3499524728, 3623721192, 3877315533, 4750893000, 5544709352, 5602516416
Offset: 1

Views

Author

David W. Wilson, Aug 15 1996

Keywords

References

  • J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Programs

  • Mathematica
    a=Sort[Flatten@Table[n^3+m^3,{m,2000},{n,m-1,1,-1}]];f3[l_]:=Module[{t={}},Do[If[l[[n]]==l[[n+2]],AppendTo[t,l[[n]]]],{n,1,Length[l]-2}];t];f3[a] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)

A155961 Numbers whose square can be expressed as the sum of two positive cubes in at least 3 ways.

Original entry on oeis.org

3343221000, 26745768000, 90266967000
Offset: 1

Views

Author

Ray Chandler, Jan 31 2009

Keywords

Comments

Although this sequence has keyword "bref", this sequence is infinite since if n is in this sequence, then n*k^3 is in this sequence for all k > 0. - Altug Alkan, May 10 2016

Examples

			a(1)=3343221000 where 3343221000^2 = 279300^3 + 2234400^3 = 790020^3 + 2202480^3 = 1256850^3 + 2094750^3.
		

Crossrefs

Formula

a(n) = sqrt(A155960(n)).

A293650 Sum of two (possibly negative) cubes in at least 3 ways (primitive solutions).

Original entry on oeis.org

728, 3367, 4104, 5859, 46683, 65728, 68913, 101528, 124488, 134379, 152551, 155736, 165464, 168112, 184464, 195841, 205352, 289224, 333944, 342657, 402597, 439101, 622232, 625177, 684019, 754299, 757701, 842751, 845208, 1009736, 1016496, 1062936, 1073375
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Primitive means that the 6 summands are coprime. Not every term is the sum of two coprime cubes. a(1) = A047696(3).

Examples

			4104 = 18^3 - 12^3 = 16^3 + 2^3 = 15^3 + 9^3, and 18, -12, 16, 2, 15, 9 are coprime, so 4104 is in the sequence.
		

Crossrefs

Cf. A051383 (all solutions); A003825 (positive cubes); A293651 (only coprime); A293645, A293647

A155057 Numbers that are the sum of two positive cubes in at least five ways (primitive solutions).

Original entry on oeis.org

48988659276962496, 490593422681271000, 6355491080314102272, 27365551142421413376, 47893568195858112000, 55634997032869710456, 68243313527087529096, 265781191139199122625, 276114357544758340608
Offset: 1

Views

Author

Ray Chandler, Jan 19 2009

Keywords

Crossrefs

Cf. A051167.

A155960 Squares which can be expressed as the sum of two positive cubes in at least 3 ways.

Original entry on oeis.org

11177126654841000000, 715336105909824000000, 8148125331379089000000
Offset: 1

Views

Author

Ray Chandler, Jan 31 2009

Keywords

Examples

			a(1) = 279300^3 + 2234400^3 = 790020^3 + 2202480^3 = 1256850^3 + 2094750^3. - _Jean-François Alcover_, Jul 03 2017
		

Crossrefs

Formula

a(n) = A155961(n)^2.
Showing 1-10 of 10 results.