A293645 Positive numbers that are the sum of two (possibly negative) coprime cubes.
1, 2, 7, 9, 19, 26, 28, 35, 37, 61, 63, 65, 91, 98, 117, 124, 126, 127, 133, 152, 169, 189, 215, 217, 218, 271, 279, 316, 331, 335, 341, 342, 344, 351, 370, 386, 387, 397, 407, 468, 469, 485, 511, 513, 539, 547, 559, 602, 604, 631, 637, 657, 665, 721, 728, 730
Offset: 1
Examples
19 = 3^3 + (-2)^3, where 3 and -2 are coprime, so 19 is in the sequence. 152 = 5^3 + 3^3, where 5 and 3 are coprime, so 152 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 101 terms from Rosalie Fay)
Crossrefs
Programs
-
Maple
filter:= proc(n) local s,x,y; for s in numtheory:-divisors(n) do x:= s/2 + sqrt(12*n/s-3*s^2)/6; if not x::integer then next fi; y:= s - x; if igcd(x,y) = 1 then return true fi; od; false end proc: select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..1000)]); # Robert Israel, Oct 22 2017
-
Mathematica
smax = 100000; (* upper limit for last term *) m0 = smax^(1/3) // Ceiling; f[m_] := f[m] = Module[{c, s, d}, Table[c = CoprimeQ[i^3, j^3]; {s = i^3 + j^3; If[0 < s <= smax && c, s, Nothing], d = j^3 - i^3; If[0 < d <= smax && c, d, Nothing]}, {i, 0, m}, {j, i, m}] // Flatten // Union]; f[m = m0]; f[m += m0]; While[f[m] != f[m - m0], m += m0]; f[m] (* Jean-François Alcover, Jun 28 2023 *)
-
PARI
upto(lim) = {my(res = List([2]), c, i, j); for(i=1,sqrtnint(lim, 3), for(j=0, sqrtnint(lim - i^3, 3), if(gcd(i, j) == 1, listput(res, c)))); for(i=1, sqrtint(lim\3)+1, for(j = 1, i, if(gcd(i, j) == 1, c = i^3 - (i-j)^3; if(c<=lim, listput(res, c), next(2))))); listsort(res, 1); res} \\ David A. Corneth, Oct 20 2017
Comments