cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A023051 Numbers that are the sum of two positive cubes in at least four ways (all solutions).

Original entry on oeis.org

6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
Offset: 1

Views

Author

David W. Wilson (revised Oct 15 1997)

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Extensions

b-file extended by Ray Chandler, Jan 19 2009

A343967 Numbers that are the sum of three positive cubes in five or more ways.

Original entry on oeis.org

161568, 262683, 314712, 326808, 359568, 443197, 444536, 471960, 503208, 513729, 515376, 526023, 529199, 532683, 552824, 597960, 702729, 736371, 746992, 806688, 844416, 863379, 907479, 924048, 931419, 975213, 1011067, 1028663, 1062937, 1092853, 1152152, 1172016, 1211048, 1232496, 1258011
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			314712 =  4^3 +  6^3 + 68^3
       =  5^3 + 24^3 + 67^3
       =  6^3 + 30^3 + 66^3
       = 31^3 + 41^3 + 60^3
       = 36^3 + 48^3 + 54^3
so 314712 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 5])
    for x in range(len(rets)):
        print(rets[x])

A025296 Numbers that are the sum of 2 nonzero squares in 5 or more ways.

Original entry on oeis.org

5525, 8125, 8450, 9425, 10625, 11050, 12025, 12325, 13325, 14365, 14450, 15725, 16250, 17225, 17425, 18125, 18785, 18850, 19825, 21125, 21250, 22100, 22525, 23125, 23725, 24050, 24505, 24650, 25625, 25925, 26650, 26825, 27625, 28730, 28925, 29725
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # generate all entries <=N
    V:= Vector(N,datatype=integer[4]):
    for a from 1 to floor(sqrt(N)) do
      for b from a do
        n:= a^2 + b^2;
        if n > N then break fi;
        V[n]:= V[n]+1
    od od:
    select(t -> V[t] >= 5, [$1..N]); # Robert Israel, Jun 01 2025
  • Mathematica
    nn = 30000; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i}]; Flatten[Position[t, ?(# >= 5 &)]] (* _T. D. Noe, Apr 07 2011 *)

A155057 Numbers that are the sum of two positive cubes in at least five ways (primitive solutions).

Original entry on oeis.org

48988659276962496, 490593422681271000, 6355491080314102272, 27365551142421413376, 47893568195858112000, 55634997032869710456, 68243313527087529096, 265781191139199122625, 276114357544758340608
Offset: 1

Views

Author

Ray Chandler, Jan 19 2009

Keywords

Crossrefs

Cf. A051167.

A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
    
  • SageMath
    def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
    [A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023
Showing 1-6 of 6 results.