A011541
Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.
Original entry on oeis.org
2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
Offset: 1
From _Zak Seidov_, Mar 22 2013: (Start)
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
- C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
- R. K. Guy, Unsolved Problems in Number Theory, D1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.
- D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d)
- Christian Boyer, New upper bounds on Taxicab and Cabtaxi numbers
- Christian Boyer, New upper bounds for Taxicab and Cabtaxi numbers, JIS 11 (2008) 08.1.6.
- "Durango" Bill Butler, Durango Bill's Ramanujan Numbers and The Taxicab Problem
- Cristian S. Calude, Elena Calude and Michael J. Dinneen, What is the value of Taxicab(6)?
- Cristian S. Calude, Elena Calude and Michael J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
- Pavel Emelyanov, On Hunting for Taxicab Numbers, arXiv:0802.1147 [math.NT], 2008.
- Shyam Sunder Gupta, On Some Special Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 22, 527-565.
- U. Hollerbach, The sixth taxicab number is 24153319581254312065344, posting to the NMBRTHRY mailing list, Mar 09 2008.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Dave McKee, Taxicab numbers, Apr 24 2001.
- Jean-Charles Meyrignac, The Taxicab Problem
- Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
- Ivars Peterson, Math Trek, Taxicab Numbers
- Randall L. Rathbun, Sixth Taxicab Number?, posting to the NMBRTHRY mailing list, Jul 16 2002.
- Walter Schneider, Taxicab Numbers
- Joseph H. Silverman, Taxicabs and Sums of Two Cubes, American Mathematical Monthly, Volume 100, Issue 4 (Apr., 1993), 331-340.
- Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Taxicab Number
- Wikipedia, Taxicab number
- D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
- D. W. Wilson, Taxicab Numbers (last snapshot available on web.archive.org, as of June 2013).
A293647
Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).
Original entry on oeis.org
91, 152, 189, 217, 513, 721, 728, 999, 1027, 1729, 3087, 3367, 4104, 4706, 4921, 4977, 5256, 5859, 6832, 7657, 8587, 8911, 9919, 10621, 10712, 12663, 12691, 12824, 14911, 15093, 15561, 16120, 16263, 20683, 21014, 23058, 23877, 25669, 27937, 28063, 31519, 32984
Offset: 1
189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence.
35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence.
-
g:= proc(s,n) local x;
x:= s/2 + sqrt(12*n/s-3*s^2)/6;
if not x::integer then return NULL fi;
[x,s - x];
end proc:
filter:= proc(n)
local pairs, i,j;
pairs:= map(g, numtheory:-divisors(n),n);
for i from 2 to nops(pairs) do
for j from 1 to i-1 do
if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi
od od;
false
end proc:
select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # Robert Israel, Oct 22 2017
-
g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6; If[!IntegerQ[x], Return[Nothing]]; {x, s - x}];
filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False];
Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* Jean-François Alcover, May 28 2023, after Robert Israel *)
A293650
Sum of two (possibly negative) cubes in at least 3 ways (primitive solutions).
Original entry on oeis.org
728, 3367, 4104, 5859, 46683, 65728, 68913, 101528, 124488, 134379, 152551, 155736, 165464, 168112, 184464, 195841, 205352, 289224, 333944, 342657, 402597, 439101, 622232, 625177, 684019, 754299, 757701, 842751, 845208, 1009736, 1016496, 1062936, 1073375
Offset: 1
4104 = 18^3 - 12^3 = 16^3 + 2^3 = 15^3 + 9^3, and 18, -12, 16, 2, 15, 9 are coprime, so 4104 is in the sequence.
A051384
Sum of two (possibly negative) cubes in at least 4 ways.
Original entry on oeis.org
2741256, 4118877, 6017193, 6742008, 9016488, 16776487, 21930048, 28699272, 32951016, 36875384, 42549416, 48137544, 48275136, 52324993, 53936064, 70957971, 72131904, 74013912, 87539319, 94287375, 102977784, 105651000, 111209679, 119824488, 122262264, 124454421, 134211896
Offset: 1
42549416 = 348^3+74^3 = 282^3+272^3 = (-2662)^3+2664^3 = (-475)^3+531^3, so 42549416 is in the sequence. (Silverman)
-
T=thueinit('z^3+1);is(n)=my(v=thue(T, n)); #v>6 && #select(u->u[1]<=u[2],v)>3 \\ Charles R Greathouse IV, Nov 29 2014
Missing terms 42549416, 48275136, 94287375, 111209679, 124454421 added by
Rosalie Fay, Oct 13 2017
A098110
Smallest number that is the difference between two positive cubes in n ways.
Original entry on oeis.org
7, 721, 3367, 4118877, 1412774811, 424910390480793
Offset: 1
Pairs (x, y) such that x^3 - y^3 = a(1), ..., a(6):
7 = (2, 1);
721 = (16, 15), (9, 2);
3367 = (34, 33), (16, 9), (15, 2)l
4118877 = (162, 51), (165, 72), (178, 115), (678, 675);
1412774811 = (1134, 357), (1155, 504), (1246, 805), (2115, 2004), (4746, 4725);
424910390480793 = (596001, 595602), (317982, 316575), (141705, 134268), (83482, 53935), (77385, 33768), (75978, 23919).
A047697
Smallest positive number that can be written in n ways as a sum of two (not necessarily positive) coprime cubes.
Original entry on oeis.org
1, 91, 3367, 16776487, 506433677359393
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, Section D1.
-
(* This naive program is not convenient for more than 4 terms *) max = 300; Clear[k]; k[] = 0; t = Reap[ Do[ Do[z = x^3 + y^3; If[CoprimeQ[x, y], k[z] = k[z] + 1]; z = -x^3 + y^3; If[CoprimeQ[x, y], k[z] = k[z] + 1]; kz = k[z]; If[kz > 1, Sow[{z, kz}]], {y, x, max}], {x, 1, max}]][[2, 1]]; s = Sort[t]; a[n] := Select[s, #[[2]] == n &, 1][[1, 1]]; a[1] = 1; Table[a[n], {n, 1, 4}] (* Jean-François Alcover, Jan 11 2013 *)
A125063
Numbers expressible as sum or difference of two cubes of primes in at least two ways.
Original entry on oeis.org
62540982, 105161238, 258428648, 349211772, 544861170, 772363566, 887381138, 932216922, 1154093668, 4904108118, 5498022546, 5668317018, 6058655748, 6445210590, 6507811154, 6991709634, 7088831048, 7370532162, 7426318142
Offset: 1
Christian Boyer (cboyer(AT)club-internet.fr), Jan 09 2007
62540982 = 397^3 - 31^3 = 1867^3 - 1861^3
105161238 = 193^3 + 461^3 = 709^3 - 631^3
Showing 1-7 of 7 results.
Comments