cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A230564 Rational rank of the n-th taxicab elliptic curve x^3 + y^3 = A011541(n).

Original entry on oeis.org

0, 2, 4, 5, 4
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

Guy, 2004: "Andrew Bremner has computed the rational rank of the elliptic curve x^3 + y^3 = Taxicab(n) as equal to 2, 4, 5, 4 for n = 2, 3, 4, 5, respectively."
Abhinav Kumar computed that a(1) = 0 (see the MathOverflow link for details). But Euler and Legendre scooped him (see the next comment).
Noam D. Elkies: "... the fact that x^3+y^3=2 has no [rational] solutions other than x=y=1 is attributed by Dickson to Euler himself: see Dickson's History of the Theory of Numbers (1920) Vol.II, Chapter XXI "Numbers the Sum of Two Rational Cubes", page 572. The reference (footnote 182) is "Algebra, 2, 170, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491". In the next page Dickson also refers to work of Legendre that includes this result (footnote 184: "Théorie des nombres, Paris, 1798, 409; ...")." See the MathOverflow link for further comments from Elkies.

Examples

			rank(x^3 + y^3 = 2) = 0.
rank(x^3 + y^3 = 1729) = 2.
rank(x^3 + y^3 = 87539319) = 4.
rank(x^3 + y^3 = 6963472309248) = 5.
rank(x^3 + y^3 = 48988659276962496) = 4.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, D1.

Crossrefs

Formula

a(n) = A060838(A011541(n)).

A132942 Concatenation of first n taxicab numbers A011541.

Original entry on oeis.org

2, 21729, 2172987539319, 21729875393196963472309248, 2172987539319696347230924848988659276962496
Offset: 1

Views

Author

Omar E. Pol, Nov 17 2007

Keywords

A134929 Successive digits of taxicab numbers A011541(n).

Original entry on oeis.org

2, 1, 7, 2, 9, 8, 7, 5, 3, 9, 3, 1, 9, 6, 9, 6, 3, 4, 7, 2, 3, 0, 9, 2, 4, 8, 4, 8, 9, 8, 8, 6, 5, 9, 2, 7, 6, 9, 6, 2, 4, 9, 6
Offset: 1

Views

Author

Omar E. Pol, Nov 17 2007

Keywords

A273594 Least number k such that abs(A011541(n+1) - A011541(n)*k^3) is a minimum.

Original entry on oeis.org

9, 37, 43, 19, 79
Offset: 1

Views

Author

Altug Alkan, May 26 2016

Keywords

Comments

If b is the sum of two positive cubes in exactly n ways, then b*c^3 is the sum of two positive cubes in at least n ways for all c > 0. So A011541(i)*c^3 is a candidate for unknown Taxi-cab numbers. a(6) = 79 is an interesting example that is related to this case. Additionally, the benefit of this simple fact is the determination of upper bounds for unknown Taxi-cab numbers in relatively easy way.
The inequalities that are given in the comment section of A011541 are:
A011541(7) <= 101^3*A011541(6),
A011541(8) <= 127^3*A011541(7),
A011541(9) <= 139^3*A011541(8).
So a(6) <= 101, a(7) <= 127, a(8) <= 139.

Examples

			a(5) = 79 because abs(A011541(6) - A011541(5)*79^3) = abs(24153319581254312065344 - 48988659276962496*79^3) = 0
		

Crossrefs

Cf. A011541.

A003325 Numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021

References

  • C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.

Crossrefs

Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).

Programs

  • Haskell
    a003325 n = a003325_list !! (n-1)
    a003325_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
    With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
    
  • PARI
    isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
    
  • PARI
    T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
    
  • Python
    from sympy import integer_nthroot
    def aupto(lim):
      cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
      sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
      return [s for s in sum_cubes if s <= lim]
    print(aupto(1343)) # Michael S. Branicky, Feb 09 2021

Extensions

Error in formula line corrected by Zak Seidov, Jul 23 2009

A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.

Original entry on oeis.org

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1

Views

Author

Keywords

Comments

From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016

Examples

			4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D1.
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.
  • H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).

Programs

  • Mathematica
    Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
  • PARI
    is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    T=thueinit(x^3+1,1);
    is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016

A272885 Cubefree taxi-cab numbers.

Original entry on oeis.org

1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603
Offset: 1

Views

Author

Altug Alkan, May 08 2016

Keywords

Comments

Taxi-cab numbers (A001235) that are not divisible by any cube > 1.
A080642 belongs to another version that A011541 focuses on.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...

Examples

			195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
		

Crossrefs

A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).

Original entry on oeis.org

0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21,    49;
61,    97,  133,  225;
237,  273,  309,  417,  453, 561,  669,  961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                       _ _ _ _
.      |  _ _  |                     |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _   _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_| |_|  _ _  |_| |
.          |   | |  _|_|_ _ _|_|_  | |   |
.          |  _| |_|  _ _   _ _  |_| |_  |
.          | | |_ _| |  _|_|_  | |_ _| | |
.          | |_ _| | |_|  _  |_| | |_ _| |
.          |  _ _  |  _| |_| |_  |  _ _  |
.          | |  _|_| | |_ _ _| | |_|_  | |
.          | |_|  _| |_ _| |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_   _| |_ _| |_  |
.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                     | |_ _| |
.      |_ _ _ _|                     |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
		

Crossrefs

Programs

  • Maple
    read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
    A048883 := proc(n) 3^wt(n) ; end proc:
    A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
    A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
  • Mathematica
    A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
  • PARI
    my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015

Formula

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

Extensions

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010

A083737 Pseudoprimes to bases 2, 3 and 5.

Original entry on oeis.org

1729, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 670033, 721801, 748657
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Comments

a(n) = n-th positive integer k(>1) such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k)
See A153580 for numbers k > 1 such that 2^k-2, 3^k-3 and 5^k-5 are all divisible by k but k is not a Carmichael number (A002997).
Note that a(1)=1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jan 18 2009

Examples

			a(1)=1729 since it is the first number such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k).
		

Crossrefs

Proper subset of A052155. Superset of A230722. Cf. A153580, A002997, A001235, A011541.

Programs

  • Mathematica
    Select[ Range[838200], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 & ]
  • PARI
    is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Extensions

Edited by Robert G. Wilson v, May 06 2003
Edited by N. J. A. Sloane, Jan 14 2009

A023051 Numbers that are the sum of two positive cubes in at least four ways (all solutions).

Original entry on oeis.org

6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
Offset: 1

Views

Author

David W. Wilson (revised Oct 15 1997)

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Extensions

b-file extended by Ray Chandler, Jan 19 2009
Showing 1-10 of 56 results. Next