cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025398 Numbers that are the sum of 3 positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 13896, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687
Offset: 1

Views

Author

Keywords

Examples

			a(1) = A230477(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3. - _Jonathan Sondow_, Oct 24 2013
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 50000], 2 < Length @ Cases[ PowersRepresentations[#, 3, 3], {?Positive, ?Positive, A008917%20by%20_Jonathan%20Sondow">?Positive}] &] (* adapted from Alcover's program for A008917 by _Jonathan Sondow, Oct 24 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<50000,if(is(n)>=3,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

Formula

A008917(n) < a(n) <= A025397(n). - Jonathan Sondow, Oct 24 2013
{n: A025456(n) >= 3}. - R. J. Mathar, Jun 15 2018

A025457 Number of partitions of n into 4 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

The first term > 1 is a(219) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Cf. A003108, A025455, A025456, A025403-A025407, A003327, A025420 (greedy inverse).

Programs

  • Maple
    N:= 100;
    A:= Array(0..N);
    for a from 1 to floor(N^(1/3)) do
      for b from a to floor((N-a^3)^(1/3)) do
         for c from b to floor((N-a^3-b^3)^(1/3)) do
            for d from c to floor((N-a^3-b^3-c^3)^(1/3)) do
              n:= a^3 + b^3 + c^3 + d^3;
              A[n]:= A[n]+1;
    od od od od:
    seq(A[n],n=0..N); # Robert Israel, Aug 18 2014
    A025457 := proc(n)
        local a,x,y,z,ucu ;
        a := 0 ;
        for x from 1 do
            if 4*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+3*y^3 > n then
                    break;
                end if;
                for z from y do
                    if x^3+y^3+2*z^3 > n then
                        break;
                    end if;
                    ucu := n-x^3-y^3-z^3 ;
                    if isA000578(ucu) then
                        a := a+1 ;
                    end if;
                end do:
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    r[n_] := Reduce[0 < a <= b <= c <= d && n == a^3+b^3+c^3+d^3, {a, b, c, d}, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
    Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Feb 26 2019 *)

Formula

a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A025406 Numbers that are the sum of 4 positive cubes in 2 or more ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1225, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 2000: # for terms <= N
    S2:= {}: S1:= {}:
    for x from 1 while x^3 < N do
    for y from 1 to x while x^3 + y^3 < N do
      for z from 1 to y while x^3 + y^3 + z^3 < N do
        for w from 1 to z do
        v:= x^3 + y^3 + z^3 + w^3;
        if v > N then break fi;
        if member(v,S1) then S2:= S2 union {v}
        else S1:= S1 union {v}
        fi
    od od od od:
    sort(convert(S2,list)); # Robert Israel, Feb 24 2021

Formula

{n: A025457(n) >= 2}. - R. J. Mathar, Jun 15 2018

A343704 Numbers that are the sum of five positive cubes in three or more ways.

Original entry on oeis.org

766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1252, 1259, 1289, 1350, 1368, 1376, 1424, 1431, 1439, 1441, 1457, 1461, 1487, 1492, 1494, 1522, 1529, 1531, 1538, 1548, 1550, 1555, 1568, 1583, 1585, 1587, 1590, 1592, 1593, 1594, 1609, 1611, 1613, 1639
Offset: 1

Views

Author

David Consiglio, Jr., Apr 26 2021

Keywords

Comments

This sequence differs from A343705 at term 20 because 1252 = 1^3+1^3+5^3+5^3+10^3= 1^3+2^3+3^3+6^3+10^3 = 3^3+3^3+7^3+7^3+8^3 = 3^3+4^3+6^3+6^3+9^3. Thus this term is in this sequence but not A343705.

Examples

			827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]#n
    for pos in cwr(power_terms,5):#m
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])#s
    for x in range(len(rets)):
        print(rets[x])

A343971 Numbers that are the sum of four positive cubes in four or more ways.

Original entry on oeis.org

1979, 2737, 3663, 4384, 4445, 4474, 4949, 5105, 5131, 5257, 5320, 5473, 5499, 5553, 5616, 5733, 5768, 5833, 5852, 5859, 6064, 6104, 6328, 6372, 6435, 6587, 6643, 6832, 6883, 6912, 6974, 7000, 7030, 7120, 7217, 7371, 7560, 7686, 7777, 7840, 8099, 8108, 8281, 8316, 8344, 8379, 8414, 8505, 8568, 8927, 9016, 9018
Offset: 1

Views

Author

David Consiglio, Jr., May 05 2021

Keywords

Examples

			3663 = 1^3 + 10^3 + 11^3 + 11^3
     = 2^3 +  4^3 +  6^3 + 15^3
     = 2^3 +  9^3 +  9^3 + 13^3
     = 4^3 +  7^3 +  8^3 + 14^3
so 3663 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344241 Numbers that are the sum of four fourth powers in three or more ways.

Original entry on oeis.org

16578, 43234, 49329, 53218, 54978, 57154, 93393, 106354, 107649, 108754, 138258, 151219, 160434, 168963, 173539, 177699, 178738, 181138, 183603, 185298, 195378, 195859, 196418, 197154, 197778, 201683, 202419, 209763, 211249, 216594, 217138, 223074, 234274, 235554, 235569, 236674, 237249, 237699
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			49329 = 2^4 + 2^4 + 12^4 + 13^4
      = 4^4 + 8^4 +  9^4 + 14^4
      = 6^4 + 9^4 + 12^4 + 12^4
so 49329 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A025368 Numbers that are the sum of 4 nonzero squares in 3 or more ways.

Original entry on oeis.org

28, 42, 52, 55, 58, 60, 63, 66, 67, 70, 73, 75, 76, 78, 79, 82, 84, 85, 87, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 132, 133, 134, 135, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >=3}. Union of A025369 and A025359.- R. J. Mathar, Jun 15 2018

A025405 Numbers that are the sum of 4 positive cubes in exactly 3 ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3717, 3736, 3753, 3815, 3941
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) = 3}. - R. J. Mathar, Jun 15 2018
Showing 1-8 of 8 results.