cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A309763 Numbers that are the sum of 4 nonzero 4th powers in more than one way.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16578, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Examples

			259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4, so 259 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    V:= Vector(N, datatype=integer[4]):
    for a from 1 while a^4 <= N do
      for b from 1 to a while a^4+b^4 <= N do
        for c from 1 to b while a^4 + b^4+ c^4 <= N do
          for d from 1 to c do
             v:= a^4+b^4+c^4+d^4;
             if v > N then break fi;
             V[v]:= V[v]+1
    od od od od:
    select(i -> V[i]>1, [$1..N]); # Robert Israel, Oct 07 2019
  • Mathematica
    Select[Range@20000, Length@Select[PowersRepresentations[#, 4, 4], ! MemberQ[#, 0] &] > 1 &]

A025407 Numbers that are the sum of 4 positive cubes in 3 or more ways.

Original entry on oeis.org

1225, 1521, 1582, 1584, 1738, 1764, 1979, 2009, 2249, 2366, 2415, 2422, 2457, 2459, 2485, 2520, 2539, 2737, 2753, 2763, 2790, 2799, 3008, 3094, 3185, 3187, 3213, 3248, 3276, 3392, 3456, 3458, 3465, 3572, 3582, 3600, 3607, 3626, 3656, 3663, 3717, 3736
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025457(n) >= 3}. - R. J. Mathar, Jun 15 2018

A344243 Numbers that are the sum of five fourth powers in three or more ways.

Original entry on oeis.org

4225, 6610, 6850, 9170, 9235, 9490, 11299, 12929, 14209, 14690, 14755, 14770, 15314, 16579, 16594, 16659, 16834, 17203, 17235, 17315, 17859, 17874, 17939, 18785, 18850, 18979, 19154, 19700, 19715, 20674, 20995, 21235, 21250, 21330, 21364, 21410, 21954, 23139, 23795, 24754, 25810, 26578, 28610, 28930
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			6850 = 1^4 + 2^4 + 2^4 + 4^4 + 9^4
     = 2^4 + 3^4 + 4^4 + 7^4 + 8^4
     = 3^4 + 3^4 + 6^4 + 6^4 + 8^4
so 6850 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A344242 Numbers that are the sum of four fourth powers in exactly three ways.

Original entry on oeis.org

16578, 43234, 49329, 53218, 54978, 57154, 93393, 106354, 107649, 108754, 138258, 151219, 160434, 168963, 173539, 177699, 178738, 181138, 183603, 185298, 195378, 195859, 196418, 197154, 197778, 201683, 202419, 209763, 211249, 216594, 217138, 223074, 234274, 235554, 235569, 237249, 237699, 240834
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344241 at term 36 because 236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4

Examples

			49329 is a member of this sequence because 49329 = 2^4 + 2^4 + 12^4 + 13^4 = 4^4 + 8^4 + 9^4 + 14^4 = 6^4 + 9^4 + 12^4 + 12^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 3])
    for x in range(len(rets)):
        print(rets[x])

A344352 Numbers that are the sum of four fourth powers in four or more ways.

Original entry on oeis.org

236674, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 708483, 708834, 729938, 789378, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979, 1339074, 1342979, 1352898, 1357059, 1379043, 1518578
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Examples

			300834 is a term of this sequence because 300834 = 1^4 + 4^4 + 12^4 + 23^4 = 1^4 + 16^4 + 18^4 + 19^4 = 3^4 + 6^4 + 18^4 + 21^4 = 7^4 + 14^4 + 16^4 + 21^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,200)]
    count = 1
    for pos in cwr(power_terms,4):
        tot = sum(pos)
        keep[tot] += 1
        count += 1
    rets = sorted([k for k,v in keep.items() if v >= 4])
    for x in range(len(rets)):
        print(rets[x])

A344239 Numbers that are the sum of three fourth powers in three or more ways.

Original entry on oeis.org

811538, 1733522, 2798978, 3750578, 4614722, 5978882, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 15916082, 16196193, 17868242, 20621042, 21556178, 22349522, 22673378, 25190802, 25589858, 27736352, 29969282, 30623138, 33998258, 39765362, 41532498, 44048498
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Examples

			2798978 =  6^4 + 31^4 + 37^4
        =  9^4 + 29^4 + 38^4
        = 13^4 + 26^4 + 39^4
so 2798978 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])

A345337 Numbers that are the sum of four fifth powers in three or more ways.

Original entry on oeis.org

1479604544, 8429250269, 31738437018, 47347345408, 101802671905, 213625838382, 269736008608, 288202145792, 353946845525, 355891431456, 359543904192, 434029382875, 453675031150, 467943544849, 470899924000, 476304861791, 568433238331, 690221638656, 706199665600
Offset: 1

Views

Author

David Consiglio, Jr., Jun 14 2021

Keywords

Comments

No numbers that are the sum of four fifth powers in four ways have been found. As a result, there is no corresponding sequence for the sum of four fifth powers in exactly three ways.

Examples

			8429250269 is a term because 8429250269 = 4^5 + 41^5 + 73^5 + 91^5  = 13^5 + 28^5 + 82^5 + 86^5  = 21^5 + 27^5 + 68^5 + 93^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-7 of 7 results.