cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A230563 Smallest number that is the sum of three positive n-th powers in at least two ways.

Original entry on oeis.org

5, 27, 251, 2673, 1375298099, 160426514
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

a(7) > 10^26 (if it exists). - Donovan Johnson, Nov 22 2013
a(7) > 33055^7 ~ 4.31*10^31 (if it exists). Duncan Moore, Oct 07 2017

Examples

			5 = 1^1 + 1^1 + 3^1 = 1^1 + 2^1 + 2^1.
27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2.
251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3.
2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4.
1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5.
160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, section 21.11.

Crossrefs

Extensions

a(4) and a(5) corrected by Donovan Johnson, Oct 28 2013
Edited by N. J. A. Sloane, Apr 03 2021

A025398 Numbers that are the sum of 3 positive cubes in 3 or more ways.

Original entry on oeis.org

5104, 9729, 12104, 12221, 12384, 13896, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687
Offset: 1

Views

Author

Keywords

Examples

			a(1) = A230477(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3. - _Jonathan Sondow_, Oct 24 2013
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 50000], 2 < Length @ Cases[ PowersRepresentations[#, 3, 3], {?Positive, ?Positive, A008917%20by%20_Jonathan%20Sondow">?Positive}] &] (* adapted from Alcover's program for A008917 by _Jonathan Sondow, Oct 24 2013 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<50000,if(is(n)>=3,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015

Formula

A008917(n) < a(n) <= A025397(n). - Jonathan Sondow, Oct 24 2013
{n: A025456(n) >= 3}. - R. J. Mathar, Jun 15 2018

A146756 a(n) is the smallest number expressible as the sum of n distinct positive n-th powers in exactly n ways.

Original entry on oeis.org

1, 65, 5104, 300834, 9006349824, 82188309244
Offset: 1

Views

Author

Ian Rayson (Ian.Rayson(AT)studentmail.newcastle.edu.au), Nov 02 2008

Keywords

Comments

It is not known if any terms exist in this sequence beyond n = 6.
Per email communication from Ian Rayson, the n-th powers for each sum must be distinct. If duplicate n-th powers were allowed, a(4) would be 236674 while the other terms would remain unchanged. - Donovan Johnson, Nov 08 2008
If duplicate n-th powers were allowed, a(2) would be 50. - Jonathan Sondow, Oct 23 2013

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(5) = 9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5. - _Donovan Johnson_, Nov 08 2008
From _Michael S. Branicky_, Dec 21 2021: (Start)
a(6) = 82188309244 =  1^6 +  9^6 + 29^6 + 44^6 + 55^6 + 60^6,
                   =  2^6 + 12^6 + 25^6 + 51^6 + 53^6 + 59^6,
                   =  5^6 + 23^6 + 27^6 + 44^6 + 51^6 + 62^6,
                   = 10^6 + 16^6 + 41^6 + 45^6 + 51^6 + 61^6,
                   = 12^6 + 23^6 + 33^6 + 34^6 + 55^6 + 61^6,
                   = 15^6 + 23^6 + 31^6 + 36^6 + 53^6 + 62^6. (End)
		

Crossrefs

Cf. A230477 (same except that the n-th powers need not be distinct and the number of ways is at least n, not necessarily exactly n). - Jonathan Sondow, Oct 23 2013

Extensions

a(5) from Donovan Johnson, Nov 08 2008
Definition clarified by Jonathan Sondow, Oct 23 2013
a(6) from Michael S. Branicky, May 09 2021

A230561 Smallest number that is the sum of two positive n-th powers in >= n ways.

Original entry on oeis.org

2, 50, 87539319
Offset: 1

Views

Author

Jonathan Sondow, Oct 23 2013

Keywords

Comments

Guy, 2004: "Euler knew that 635318657 = 133^4 + 134^4 = 59^4 + 158^4, and Leech showed this to be the smallest example. No one knows of three such equal sums." Thus no one knows whether a(4) exists, which requires four such equal sums.
a(4) > 10^21 (if it exists). There is no number <= 10^21 that is the sum of two positive 4th powers in >= three ways. - Donovan Johnson, Jan 07 2014

Examples

			2 = 1^1 + 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

Cf. A048610, A011541 for a(2), a(3).
Cf. also A016078, A230477.

Formula

a(n) >= A016078(n) for n > 1, with equality at least for n = 2, and inequality at least for n = 3.

A091414 Least number that is the sum of n positive n-th powers in at least 2 ways.

Original entry on oeis.org

50, 251, 259, 4097, 570947, 73310705, 647282661, 79327628290, 1077347903894, 1761813250036143, 2343908545594901
Offset: 2

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Mar 02 2004

Keywords

Comments

From Donovan Johnson, Sep 14 2008: (Start)
a(11) = 2^11 + 2^11 + 2^11 + 2^11 + 8^11 + 10^11 + 10^11 + 15^11 + 22^11 + 22^11 + 22^11 = 3^11 + 5^11 + 5^11 + 5^11 + 6^11 + 9^11 + 11^11 + 12^11 + 17^11 + 20^11 + 24^11.
a(12) = 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 9^12 + 9^12 + 9^12 + 15^12 + 19^12 = 3^12 + 5^12 + 5^12 + 10^12 + 10^12 + 10^12 + 10^12 + 12^12 + 12^12 + 17^12 + 17^12 + 18^12.
a(13) > 876*10^15. a(14) > 799*10^15. a(15) > 115*10^16. (End)

Examples

			a(3) = 251 because 251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3 and it is the smallest number that can be represented two ways as the sum of three third powers.
		

Crossrefs

a(2) = A048610(2), a(3) = A008917(1), a(4) = A185673(2). - Jonathan Sondow, Oct 24 2013

Formula

a(n) <= A230477(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5. - Jonathan Sondow, Oct 24 2013

Extensions

More terms from David Wasserman, Mar 09 2006
a(11)-a(12) from Donovan Johnson, Sep 14 2008
Definition shortened by Jonathan Sondow, Oct 24 2013

A219921 Numbers expressible as the sum of four nonnegative fourth-powers in four different ways.

Original entry on oeis.org

236674, 260658, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 671778, 708483, 708834, 729938, 789378, 811538, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979
Offset: 1

Views

Author

Keywords

Comments

A natural extension of the two-sets-of-two-cubes taxi-cab numbers (A001235).
a(4) is the first number which contains distinct fourth-powers in all four sets of four, and is therefore also A146756(4).

Examples

			a(1) = 236674 = 1^4+2^4+7^4+22^4 = 3^4+6^4+18^4+19^4 = 7^4+14^4+16^4+19^4 = 8^4+16^4+17^4+17^4.
		

Crossrefs

Other sums of four fourth powers: A176197, A133526.
Showing 1-6 of 6 results.