cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A230477 Smallest number that is the sum of n positive n-th powers in >= n ways.

Original entry on oeis.org

1, 50, 5104, 236674, 9006349824, 82188309244
Offset: 1

Views

Author

Jonathan Sondow, Oct 22 2013

Keywords

Comments

Does a(6) exist? For which values of n does a(n) exist? Is there a proof that a(n) < a(n+1) when both exist?

Examples

			1 = 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4.
9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5.
82188309244 = 1^6 + 9^6 + 29^6 + 44^6 + 55^6 + 60^6 = 2^6 + 12^6 + 25^6 + 51^6 + 53^6 + 59^6 = 5^6 + 23^6 + 27^6 + 44^6 + 51^6 + 62^6 = 10^6 + 16^6 + 41^6 + 45^6 + 51^6 + 61^6 = 12^6 + 23^6 + 33^6 + 34^6 + 55^6 + 61^6 = 15^6 + 23^6 + 31^6 + 36^6 + 53^6 + 62^6.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover, NY, 1966, pp. 162-165, 290-291.
  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

a(2) = A048610(2), a(3) = A025398(1), a(4) = A219921(1).
Cf. A146756 (smallest number that is the sum of n distinct positive n-th powers in exactly n ways), A230561 (smallest number that is the sum of two positive n-th powers in >= n ways), A091414 (smallest number that is the sum of n positive n-th powers in >= 2 ways).

Formula

a(n) <= A146756(n), with equality at least for n = 1, 3, 5 and inequality at least for n = 2, 4.
a(n) >= A091414(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5.

Extensions

a(5) from Donovan Johnson, Oct 23 2013
a(6) from Michael S. Branicky, May 09 2021

A349764 a(n) is the smallest number which can be represented as the sum of n distinct n-th powers of primes in exactly n ways.

Original entry on oeis.org

2, 410, 8627527, 199898912404
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 20 2021

Keywords

Examples

			For n = 2: 410 = 7^2 + 19^2 = 11^2 + 17^2.
For n = 3: 8627527 = 19^3 + 151^3 + 173^3 = 23^3 + 139^3 + 181^3 = 71^3 + 73^3 + 199^3.
From _Michael S. Branicky_, Dec 21 2021: (Start)
For n = 4: 199898912404 =  23^4 + 281^4 + 397^4 + 641^4,
                        = 137^4 + 383^4 + 467^4 + 601^4,
                        = 151^4 + 227^4 + 557^4 + 563^4,
                        = 257^4 + 317^4 + 347^4 + 643^4. (End)
		

Crossrefs

Cf. A146756.

Extensions

a(4) from Michael S. Branicky, Dec 21 2021

A146760 Last prime subtrahend at 10^n in A146759.

Original entry on oeis.org

5, 61, 997, 9929, 97283, 999983, 9999973, 99897341, 999999929, 9993948257, 99999999761, 999999999989, 9999516957181, 99999999999929, 999999999999989, 9999999999998857, 99999429057832259, 999999999999999989, 9999990391470218071
Offset: 1

Views

Author

Enoch Haga, Nov 02 2008

Keywords

Comments

It is not necessary to compute A146759 to compute this sequence. a(n) is the largest prime p<=10^n such that c(p)-p is also a prime, where c(p) is the smallest cube exceeding p. - Sean A. Irvine, Mar 27 2013

Examples

			A(2)=61 because 61 is the 7th and last prime subtrahend under 10^3.
		

Crossrefs

Programs

  • UBASIC
    10 'cu less pr are prime
    20 N=1:O=1:C=1
    30 A=3:S=sqrt(N):if N>10^3 then print N,C-1:stop
    40 B=N\A
    50 if B*A=N then 100
    60 A=A+2
    70 if A<=S then 40
    80 R=O^3:Q=R-N
    90 if N1 print R;N;Q;C:N=N+2:C=C+1:goto 30
    100 N=N+2:if N
    				

Extensions

More terms from Sean A. Irvine, Mar 27 2013

A374227 a(n) is the smallest number which can be represented as the sum of three distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

6, 62, 5104, 5978882
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

A374228 a(n) is the smallest number which can be represented as the sum of four distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

10, 90, 1521, 300834
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 1521 = 1^3 + 2^3 + 8^3 + 10^3 = 1^3 + 4^3 + 5^3 + 11^3 = 4^3 + 6^3 + 8^3 + 9^3.
		

Crossrefs

A374256 a(n) is the smallest number which can be represented as the sum of n distinct positive n-th powers in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 65, 1009, 6834, 1158224, 19198660, 1518471174, 301963223843, 14599274102522, 1601155487573222
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue;
      local pq,w,t,g,i,count,newt;
      g:= proc(t) local i; [-add((t[i]+i)^n,i=1..n),op(t)] end proc;
      w:= [0$(n+1)];
      initialize(pq);
      insert(g([0$n]),pq);
      do
        t:= extract(pq);
        if t[1] = w[1] then return -t[1] fi;
        w:= t;
        for i from 2 to n+1 do
            if t[i]=t[-1] then
              newt:= g(t[2..-1] + [0$(i-2),1$(n+2-i)]);
            insert(newt,pq);
      fi od od;
    end proc:
    -1, seq(f(n),n=2..10); # Robert Israel, Jul 01 2024

Extensions

a(9)-a(10) from Robert Israel, Jul 01 2024

A374257 a(n) is the smallest number which can be represented as the sum of n distinct positive n-th powers in exactly 3 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 325, 5104, 16578, 70211956, 201968338, 1690592199245
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(2) = 325 = 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2.
a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.solvers.diophantine.diophantine import power_representation
    def A374257(n): return next(m for m in count(1) if len(list(power_representation(m,n,n)))==3) if n>1 else -1 # Chai Wah Wu, Jul 01 2024

Extensions

a(7) from Michael S. Branicky, Jul 09 2024

A146759 Number of primes p < 10^n such that c - p is prime, where c is the next cube greater than p.

Original entry on oeis.org

2, 7, 43, 224, 1355, 9306, 66200, 500249, 3883527, 31081813, 254358928, 2120975833
Offset: 1

Views

Author

Enoch Haga, Nov 02 2008

Keywords

Examples

			a(2) = 7 because at 10^2 there are 7 primes that, subtracted from the next higher value cube, produce prime differences: {3, 5, 41, 47, 53, 59, 61}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Prime[Range[PrimePi[10^n]]], PrimeQ[Ceiling[#^(1/3)]^3 - #] &]], {n, 6}] (* T. D. Noe, Mar 31 2013 *)
    cpQ[n_]:=PrimeQ[Ceiling[Surd[n,3]]^3-n]; nn=9; Module[{c=Table[If[ cpQ[n],1,0], {n, Prime[ Range[ PrimePi[ 10^nn]]]}]}, Table[ Total[ Take[c,PrimePi[10^p]]],{p,nn}]] (* Harvey P. Dale, Aug 13 2014 *)
  • PARI
    a(n) = {my(nb = 0); forprime(p=2, 10^n, if (isprime((sqrtnint(p,3)+1)^3 - p), nb++);); nb;} \\ Michel Marcus, Jun 22 2019
    
  • PARI
    list(nmax) = {my(m = 0, c = 2, cc = c^3, n = 0, pow = 10); forprime(p = 1, , if(p > pow, print1(m, ", "); n++; if(n == nmax, break); pow *= 10); if(p > cc, c++; cc = c^3); if(isprime(cc - p), m++));} \\ Amiram Eldar, Jan 20 2025
  • UBASIC
    10 'cu less pr are prime
    20 N=1:O=1:C=1
    30 A=3:S=sqrt(N):if N>10^3 then print N,C-1:stop
    40 B=N\A
    50 if B*A=N then 100
    60 A=A+2
    70 if A<=S then 40
    80 R=O^3:Q=R-N
    90 if N1 print R;N;Q;C:N=N+2:C=C+1:goto 30
    100 N=N+2:if N
    				

Extensions

Better name and more terms from Sean A. Irvine, Mar 27 2013
a(10)-a(11) from Chai Wah Wu, Jun 21 2019
a(12) from Amiram Eldar, Jan 20 2025

A374226 a(n) is the smallest number which can be represented as the sum of two distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

3, 65, 87539319
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.
		

Crossrefs

A219921 Numbers expressible as the sum of four nonnegative fourth-powers in four different ways.

Original entry on oeis.org

236674, 260658, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 671778, 708483, 708834, 729938, 789378, 811538, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979
Offset: 1

Views

Author

Keywords

Comments

A natural extension of the two-sets-of-two-cubes taxi-cab numbers (A001235).
a(4) is the first number which contains distinct fourth-powers in all four sets of four, and is therefore also A146756(4).

Examples

			a(1) = 236674 = 1^4+2^4+7^4+22^4 = 3^4+6^4+18^4+19^4 = 7^4+14^4+16^4+19^4 = 8^4+16^4+17^4+17^4.
		

Crossrefs

Other sums of four fourth powers: A176197, A133526.
Showing 1-10 of 13 results. Next