cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230477 Smallest number that is the sum of n positive n-th powers in >= n ways.

Original entry on oeis.org

1, 50, 5104, 236674, 9006349824, 82188309244
Offset: 1

Views

Author

Jonathan Sondow, Oct 22 2013

Keywords

Comments

Does a(6) exist? For which values of n does a(n) exist? Is there a proof that a(n) < a(n+1) when both exist?

Examples

			1 = 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4.
9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5.
82188309244 = 1^6 + 9^6 + 29^6 + 44^6 + 55^6 + 60^6 = 2^6 + 12^6 + 25^6 + 51^6 + 53^6 + 59^6 = 5^6 + 23^6 + 27^6 + 44^6 + 51^6 + 62^6 = 10^6 + 16^6 + 41^6 + 45^6 + 51^6 + 61^6 = 12^6 + 23^6 + 33^6 + 34^6 + 55^6 + 61^6 = 15^6 + 23^6 + 31^6 + 36^6 + 53^6 + 62^6.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover, NY, 1966, pp. 162-165, 290-291.
  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

a(2) = A048610(2), a(3) = A025398(1), a(4) = A219921(1).
Cf. A146756 (smallest number that is the sum of n distinct positive n-th powers in exactly n ways), A230561 (smallest number that is the sum of two positive n-th powers in >= n ways), A091414 (smallest number that is the sum of n positive n-th powers in >= 2 ways).

Formula

a(n) <= A146756(n), with equality at least for n = 1, 3, 5 and inequality at least for n = 2, 4.
a(n) >= A091414(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5.

Extensions

a(5) from Donovan Johnson, Oct 23 2013
a(6) from Michael S. Branicky, May 09 2021

A374256 a(n) is the smallest number which can be represented as the sum of n distinct positive n-th powers in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 65, 1009, 6834, 1158224, 19198660, 1518471174, 301963223843, 14599274102522, 1601155487573222
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue;
      local pq,w,t,g,i,count,newt;
      g:= proc(t) local i; [-add((t[i]+i)^n,i=1..n),op(t)] end proc;
      w:= [0$(n+1)];
      initialize(pq);
      insert(g([0$n]),pq);
      do
        t:= extract(pq);
        if t[1] = w[1] then return -t[1] fi;
        w:= t;
        for i from 2 to n+1 do
            if t[i]=t[-1] then
              newt:= g(t[2..-1] + [0$(i-2),1$(n+2-i)]);
            insert(newt,pq);
      fi od od;
    end proc:
    -1, seq(f(n),n=2..10); # Robert Israel, Jul 01 2024

Extensions

a(9)-a(10) from Robert Israel, Jul 01 2024

A344338 Smallest number that is the sum of two or more consecutive positive n-th powers in more than one way.

Original entry on oeis.org

9, 365, 33075
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2021

Keywords

Comments

a(4) > 10^24. - Bert Dobbelaere, May 16 2021
Conjecture: no terms exist for n >= 4. - Jon E. Schoenfield, May 16 2021

Examples

			9 = 2 + 3 + 4 = 4 + 5.
365 = 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
33075 = 11^3 + 12^3 + 13^3 + 14^3 + 15^3 + 16^3 + 17^3 + 18^3 + 19^3 = 15^3 + 16^3 + 17^3 + 18^3 + 19^3 + 20^3.
		

Crossrefs

Programs

  • Python
    N=3 # <== Adapt here
    import heapq
    sigma=1+2**N
    h=[(sigma,1,2)]
    nextcount=3
    oldv,olds,oldl=0,0,0
    while True:
        (v,s,l)=heapq.heappop(h)
        if v==oldv:
            break
        if v>=sigma:
            sigma += nextcount**N
            heapq.heappush(h, (sigma,1,nextcount))
            nextcount+=1
        oldv,olds,oldl = v,s,l
        v-=s**N ; s+=1 ; l+=1 ;    v+=l**N
        heapq.heappush(h,(v,s,l))
    print("a(%d) = %d = sum(i^%d, i=%d..%d) = sum(i^%d, i=%d..%d)"%
        (N,v,N,olds,oldl,N,s,l))
    # Bert Dobbelaere, May 16 2021
Showing 1-3 of 3 results.