cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230563 Smallest number that is the sum of three positive n-th powers in at least two ways.

Original entry on oeis.org

5, 27, 251, 2673, 1375298099, 160426514
Offset: 1

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

a(7) > 10^26 (if it exists). - Donovan Johnson, Nov 22 2013
a(7) > 33055^7 ~ 4.31*10^31 (if it exists). Duncan Moore, Oct 07 2017

Examples

			5 = 1^1 + 1^1 + 3^1 = 1^1 + 2^1 + 2^1.
27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2.
251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3.
2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4.
1375298099 = 3^5 + 54^5 + 62^5 = 24^5 + 28^5 + 67^5.
160426514 = 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, section 21.11.

Crossrefs

Extensions

a(4) and a(5) corrected by Donovan Johnson, Oct 28 2013
Edited by N. J. A. Sloane, Apr 03 2021

A016078 Smallest number that is sum of 2 positive n-th powers in 2 different ways.

Original entry on oeis.org

4, 50, 1729, 635318657
Offset: 1

Views

Author

Robert G. Wilson v, Dec 11 1999

Keywords

Comments

If it exists, a(5) > 1.02*10^26 (see eqn. (27) at the Mathworld link). - Jon E. Schoenfield, Jan 05 2019

Examples

			4 = 1^1 + 3^1 = 2^1 + 2^1;
50 = 1^2 + 7^2 = 5^2 + 5^2,
1729 = 1^3 + 12^3 = 9^3 + 10^3;
635318657 = 59^4 + 158^4 = 133^4 + 134^4 = A018786(1).
		

Crossrefs

Programs

Formula

If A230561(n) exists, then a(n) <= A230561(n) for n > 1, with equality at least for n = 2, and inequality at least for n = 3. - Jonathan Sondow, Oct 24 2013 [Comment edited by N. J. A. Sloane, Apr 03 2021]

A230477 Smallest number that is the sum of n positive n-th powers in >= n ways.

Original entry on oeis.org

1, 50, 5104, 236674, 9006349824, 82188309244
Offset: 1

Views

Author

Jonathan Sondow, Oct 22 2013

Keywords

Comments

Does a(6) exist? For which values of n does a(n) exist? Is there a proof that a(n) < a(n+1) when both exist?

Examples

			1 = 1^1.
50 = 1^2 + 7^2 = 5^2 + 5^2.
5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
236674 = 1^4 + 2^4 + 7^4 + 22^4 = 3^4 + 6^4 + 18^4 + 19^4 = 7^4 + 14^4 + 16^4 + 19^4 = 8^4 + 16^4 + 17^4 + 17^4.
9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5.
82188309244 = 1^6 + 9^6 + 29^6 + 44^6 + 55^6 + 60^6 = 2^6 + 12^6 + 25^6 + 51^6 + 53^6 + 59^6 = 5^6 + 23^6 + 27^6 + 44^6 + 51^6 + 62^6 = 10^6 + 16^6 + 41^6 + 45^6 + 51^6 + 61^6 = 12^6 + 23^6 + 33^6 + 34^6 + 55^6 + 61^6 = 15^6 + 23^6 + 31^6 + 36^6 + 53^6 + 62^6.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover, NY, 1966, pp. 162-165, 290-291.
  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1.

Crossrefs

a(2) = A048610(2), a(3) = A025398(1), a(4) = A219921(1).
Cf. A146756 (smallest number that is the sum of n distinct positive n-th powers in exactly n ways), A230561 (smallest number that is the sum of two positive n-th powers in >= n ways), A091414 (smallest number that is the sum of n positive n-th powers in >= 2 ways).

Formula

a(n) <= A146756(n), with equality at least for n = 1, 3, 5 and inequality at least for n = 2, 4.
a(n) >= A091414(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5.

Extensions

a(5) from Donovan Johnson, Oct 23 2013
a(6) from Michael S. Branicky, May 09 2021

A230562 Smallest number that is the sum of 2 positive 4th powers in >= n ways.

Original entry on oeis.org

0, 2, 635318657
Offset: 0

Views

Author

Jonathan Sondow, Oct 25 2013

Keywords

Comments

Hardy and Wright say that a(3) is unknown.
Guy, 2004: "Euler knew that 635318657 = 133^4 + 134^4 = 59^4 + 158^4, and Leech showed this to be the smallest example. No one knows of three such equal sums."

Examples

			0 = (empty sum).
2 = 1^4 + 1^4.
635318657 = 59^4 + 158^4 = 133^4 + 134^4.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, D1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, 2008; section 21.11.

Crossrefs

A091414 Least number that is the sum of n positive n-th powers in at least 2 ways.

Original entry on oeis.org

50, 251, 259, 4097, 570947, 73310705, 647282661, 79327628290, 1077347903894, 1761813250036143, 2343908545594901
Offset: 2

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Mar 02 2004

Keywords

Comments

From Donovan Johnson, Sep 14 2008: (Start)
a(11) = 2^11 + 2^11 + 2^11 + 2^11 + 8^11 + 10^11 + 10^11 + 15^11 + 22^11 + 22^11 + 22^11 = 3^11 + 5^11 + 5^11 + 5^11 + 6^11 + 9^11 + 11^11 + 12^11 + 17^11 + 20^11 + 24^11.
a(12) = 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 2^12 + 9^12 + 9^12 + 9^12 + 15^12 + 19^12 = 3^12 + 5^12 + 5^12 + 10^12 + 10^12 + 10^12 + 10^12 + 12^12 + 12^12 + 17^12 + 17^12 + 18^12.
a(13) > 876*10^15. a(14) > 799*10^15. a(15) > 115*10^16. (End)

Examples

			a(3) = 251 because 251 = 1^3 + 5^3 + 5^3 = 2^3 + 3^3 + 6^3 and it is the smallest number that can be represented two ways as the sum of three third powers.
		

Crossrefs

a(2) = A048610(2), a(3) = A008917(1), a(4) = A185673(2). - Jonathan Sondow, Oct 24 2013

Formula

a(n) <= A230477(n) for n > 1, with equality at least for n = 2 and inequality at least for n = 3, 4, 5. - Jonathan Sondow, Oct 24 2013

Extensions

More terms from David Wasserman, Mar 09 2006
a(11)-a(12) from Donovan Johnson, Sep 14 2008
Definition shortened by Jonathan Sondow, Oct 24 2013
Showing 1-5 of 5 results.