cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A024975 Sums of three distinct positive cubes.

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A003072. Equals A024973 if duplicates of repeated entries are removed. - R. J. Mathar, Apr 13 2008

Crossrefs

Cf. A122723 (primes in here), A025399-A025402, A025411 (4 distinct positive cubes).

Programs

  • Mathematica
    Total/@Subsets[Range[10]^3,{3}]//Union (* Harvey P. Dale, Aug 22 2021 *)
  • PARI
    list(lim)=my(v=List(),x3,t); lim\=1; for(x=3,sqrtnint(lim-9,3), x3=x^3; for(y=2,min(x-1,sqrtnint(lim-x3-1,3)), t=x3+y^3; for(z=1,min(y-1,sqrtnint(lim-t,3)), listput(v,t+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 20 2016

Formula

{n: A025469(n) >= 1}. - R. J. Mathar, Jun 15 2018

Extensions

Verified by Don Reble, Nov 19 2006

A025469 Number of partitions of n into 3 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z > 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1.
For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one.
(End)
		

Crossrefs

Cf. A025465 (not necessarily distinct), A025468, A025419 (greedy inverse).
Cf. A024975 (positions of nonzero terms), A024974 (positions of terms > 1), A025399-A025402.

Programs

Formula

a(n) = A025465(n) - A025468(n). - Antti Karttunen, Aug 29 2017

A025403 Numbers that are the sum of 4 positive cubes in exactly 1 way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 224, 226, 233, 240, 243, 245, 254, 256, 261, 266, 271, 280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 300, n++, pr = Select[ PowersRepresentations[n, 4, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

{n: A025457(n) = 1}. - R. J. Mathar, Jun 15 2018

A165454 Numbers the squares of which are sums of three distinct positive cubes.

Original entry on oeis.org

6, 15, 27, 48, 53, 59, 71, 78, 84, 87, 90, 96, 98, 116, 120, 121, 125, 134, 153, 162, 163, 167, 180, 188, 204, 213, 216, 224, 225, 226, 230, 240, 242, 244, 251, 253, 255, 262, 264, 280, 287, 288, 303, 314, 324, 330, 342, 350, 356, 363, 368, 372, 381, 384, 393
Offset: 1

Views

Author

Keywords

Examples

			6 is in the sequence because 6^2 = 1^3+2^3+3^3.
15 is in the sequence because 15^2 = 1^3+2^3+6^3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sc:= {seq(seq(seq(a^3 + b^3 + c^3, a = 1 .. min(b-1, floor((N^2 - b^3 - c^3)^(1/3)))), b = 2 .. min(c-1,floor((N^2 - c^3)^(1/3)))), c = 3 .. floor(N^(2/3)))}:
    select(t -> member(t^2,sc), [$1..N]); # Robert Israel, Jan 27 2015
  • Mathematica
    lst={};Do[Do[Do[d=Sqrt[a^3+b^3+c^3];If[d<=834&&IntegerQ[d],AppendTo[lst, d]],{c,b+1,5!,1}],{b,a+1,5!,1}],{a,5!}];Take[Union@lst,123]
    Sqrt[# ]&/@Select[Total/@Subsets[Range[50]^3,{3}],IntegerQ[Sqrt[#]]&]// Union (* Harvey P. Dale, Oct 14 2020 *)

Formula

{k >0: k^2 in A024975}. [R. J. Mathar, Oct 06 2009]

Extensions

Comments moved to the examples by R. J. Mathar, Oct 07 2009
Title corrected by Jeppe Stig Nielsen, Jan 26 2015
Showing 1-4 of 4 results.